IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1949

Some factors influencing the slicing quality and the palatability of canned beef

Mary Eloise Green Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Agriculture Commons</u>, and the <u>Food Science Commons</u>

Recommended Citation

Green, Mary Eloise, "Some factors influencing the slicing quality and the palatability of canned beef" (1949). *Retrospective Theses and Dissertations*. 12816. https://lib.dr.iastate.edu/rtd/12816

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

NOTE TO USERS

This reproduction is the best copy available.

SOME FACTORS INFLUENCING

THE SLICING QUALITY AND THE PALATABILITY

OF CANNED BEEF

by

Mary Eloise Green

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Foods

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Vepartment/

Signature was redacted for privacy.

Dean of Graduate College

Iowa State College 1949

UMI Number: DP11878

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform DP11878

Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

TX556.B4 M825

- ii -

1126-29

TABLE OF CONTENTS

																								Page
INTRO	DU	CTI	ON	τ.	•	•	٠	•	•	٠	÷	•	*	٠	•	•		٠	•	•	•	•	•	1
REVIE	W	OF	LI	TE	RA!	rui	RE	•	•	•		•	*	•	é	•	•	٠	•	•	•	•	•	3
	st	ruc	tu	ire	81	nd	Co	mŗ	008	ii	ti	on	0	f i	Ske	əle	ote	1	Mı	18(cle		•	3
	Pr	ote	in	IS	of	Ma	180	ele	j		•	٠			• :	٠	•	•	•	٠	•	•	•	5
	•		Ir	tr	ace)]]	[u]	ar	, b	r	ote	∍ir	15	•	•	•	•	•	•	•	•	٠	٠	5
			De	na	tu	rai	tic	n	of	r (I	ore	ote	18)1)	ns	•	•	* •	•	* *	•	•	•	•	10
	Va	ris	ti	on	8 8	ami(ong	3 I	lus	ic]	Lei	3 8	in	đ	amo	one	z I	۱ni	me	1	3	*	٠	11
· .	In	flu	en	ce	01	e 1	ρH	•	•		•	•	٠	÷	•	٠		•	•	٠	٠	•	•	15
	Po	st-	mc	rt	em	Cł	ıar	ıge	8	đı	ıri	ing	ςı	Ag:	ing	g c	î	Be	ef	•	•	•	•	18
	Ch	ang	;es	đ	uri	lng	g t	:he	o C	:00)k:	ing	5	of	Be	ef	8	٠	•	•	•	•	٠	2 2
			Ch Ch	an,	gei	8 j	ln In	te	nd at	lor	18	ar	ıđ	1:	ige	ame	nt	58	*	•	•	•	•	22 24
	Ar	റന്നമ		nd	. ۳.9 . ت		701	, c	of	Re	•	.		•	•	•	•	•	•	•	•	•	•	27
	Ef.	fac	t.	of	л. Ас	100	ad	Su	bs	its	n	385	•						•	•			-	28
	Ca	nni	no	P	roi	380	3117	188			-			•					·				-	33
EXPER	TM	ENT	'AI	P	RO	CEI	DUF	RE										•	•		•		•	35
	Pr	eli	mi	na	ry	Iı	n v e	st	;i¢		tie	ona	3		•	•		•	•			•	•	35
	Se	lec	ti	on	ot	e 1	٩ni	ma	13	1	•	*	•	٠	•	•	•.	•	٠	•	*	•	•	36
	S 1	aue	çht	er	o	C 1	\ni	.mø	ls	وا	Se	ape	ırı	at:	i or	10	of	Mu	180	le	38,			
		ar	ıđ	Di	vi	si (on	in	ito) (Jui	ts	٠	٠	•	٠	•	•	٠	•	٠	٠	•	37
2a	In	jec	ti	on	o	r (Cut	58	of	1	lea	at	٠	٠	٠	۲	٠	•.	٠	٠	٠	•	٠	50
			Eq Sc Me	ui lu th	pme tie od	ent ons of	t 9 u 6 1	ise nj	d jec	fo t	or lor	ir 1	ij	ec.	tio •	on •	•	•	• •	• • •	•	•	• •	50 50 51

T9117

•		Page
	Aging the Cuts	55
	Canning the Meat	55
	Equipment	55
	Preparation of samples	55
	Preheating the meat	56
	Processing the meat	57
		0.
	Evaluation of the Canned Meat	57
	Preparation for evaluation	5 7
	Slicing the meat	59
	Scoring the meat	61
	Gelation of liquid	61
	Measurement of oH	62
	Histological study	63
RESU	LTS AND DISCUSSION	65
	Palatability of Canned Beef	6 6
	Aroma	67
	Flavor	71
	Flavor of liquid	74
	Tenderness	76
	Juiciness	83
	Texture	89
	Histological Appearance of Beef Fibers	94
	Fresh muscle	96
	Sodium chloride injection	98
	Sodium chloride and lactic acid	
	injection	102
	Lactic acid injection	107
	Slicing Quality of Canned Beef	110
	pH Values	122
	Weight Changes	122
	General Characteristics of Beef Samples	134
	Gelation of Liquid	135

- 111 -

																				Page
SUMMARY	• • • •	. .	: •	٠	•	•	•	*	٠	٠	٠	٠		•	٠	÷,	٠	۰.	٠	137
CONCLUSIC	ns	•	• •	•	٠		٠	٠	•	*		٠	۲	٠	٠	•		•,	۰.	142
LITERATUR	E CITEI		: .]*	۰,	•	۲	۰	•,	٠	*		٠	٠	•	٠	•	٠	•.	۰.	143
ACKNOWLED	GMENTS	- 1 	•	•	•	•	•	•	•	•	•	•:	٠	●,	*	•	•	•	•-	147
APPENDIX	1995 - 1995 - • • • •	. • • •	•	•	•	٠	- 11 I ∳	•		•	•	•	ь •	•	- 4 €	•	•	•	•	148
	and the second	i .	÷				5 A													

INTRODUCTI ON

Good slicing quality in meat is a desirable characteristic not usually secured in the canned product. The long processing time at high temperature during canning causes changes to occur in the muscle fibers and in the connective tissue so that the meat tends to fall apart and be stringy. These changes are not well understood and are suitable for investigation from many standpoints. For this study some of the physical aspects of the slicing quality and the palatability of canned beef have been considered.

The addition of table salt to meat during cooking is known to affect the flavor. Some experimental work has shown that immersion of cubes of beef in various brining solutions prior to cooking improves the tenderness, juiciness, and texture as well as the flavor. The hydrogen ion concentration of meat is a factor of importance in the catalytic changes that occur during aging of raw meat and during the cooking or canning process. The lactic acid content of the meat influences to considerable extent the pH under various storage and cooking conditions. Since substances added to the surface of meat, unless given a long time for penetration, tend to affect only the surface portions, it was decided to inject certain solutions into the meat. The substances

- 1 -

selected for experimentation were sodium chloride, lactic acid, and a mixture of the two substances.

In order to have cuts of meat from the same anatomical position, matching pairs of muscles were separated from the carcass and divided into cuts. The cuts from one side of the animal were injected and those from the other side served as controls. Four animals of the same carcass grade and one animal of a lower grade were used. After a suitable aging period the cuts of beef were canned. The processing time for the meat from three of the animals was a period considered to be safe from a bacteriological standpoint; a longer processing, typical of that often used in canning meat, was used for the other two animals.

The principal characteristics compared in the control and in the injected samples follow: (1) slicing quality, as indicated by number and character of slices obtained, by weight of unsliceable meat, and by judges' scores for sliceability, (2) palatability, as determined by judges' scores for aroma, flavor of meat and of liquid, tenderness, juiciness, and texture, and (3) microscopic appearance of muscle fibers and connective tissue of the rib portion of the longissimus dorsi muscle.

- 2 -

REVIEW OF LITERATURE

References to the slicing quality of beef in the literature are practically nil. Indirectly this quality has been considered from the standpoint of tenderness and texture of various meats. Much of the work pertaining to the palatability of beef is related to fresh or to frozen beef prepared by roasting, broiling, stewing, or cooking in deep fat. Canned beef or other canned meat has been studied primarily in regard to the bacteriological aspects and the adequacy of processing methods or to the retention of nutrients.

Considerable attention has recently been directed to the physical and chemical changes taking place in living muscle and to post-mortem changes occurring after slaughter of animals for food.

Structure and Composition of Skeletal Muscle

In its physical aspects skeletal muscle is made up of bundles of muscle fibers held together with connective tissue. This arrangement is apparent even to the unaided eye, but becomes increasingly evident on microscopic examination. Maximow and Bloom (20) state that skeletal muscle

- 3 -

fibers are from 10 to 100 or more microns in thickness and the length is usually shorter than that of the muscle. The boundary of the fiber is a transparent film (sarcolemma) and within it are long parallel threads (myofibrils), interfibrillar substances (sarcoplasm), and nuclei. The myofibrils have a maximum diameter of 1 to 2 microns and extend parallel to the long axis of the fiber giving the appearance of longitudinal striations within the fiber. Along the length of each fibril are alternate dark (A) and light (I) disks or bands which appear as crosswise striae in the muscle fiber. The myofibrils are the contractile part of the fiber.

The connective tissue meshwork of muscle is designated as endomysium if it surrounds the fibers within a bundle, as perimysium if it surrounds the bundle, and as epimysium if it forms the sheath around the muscle. Some fat globules are located within the connective tissue, as are blood and lymph vessels and nerves. The connective tissue has both collagenous and elastic fibers, the former being long, straight or wavy and containing fibrils, whereas the latter are usually branched and are lacking in fibrils. Collagenous fibers usually have a parallel arrangement; the elastic ones often appear singly. Tendons contain much collagenous tissue and ligaments are high in elastic connective tissue.

4 -

Proteins of Muscle

The proteins making up the different parts of the muscle have received considerable study. Bailey (5) refers to collagen and elastin as extracellular proteins and to the protein components of the sarcoplasm and fibrils as intracellular.

Intracellular proteins

Bailey (5) states that the fibrils consist of myosin (a globulin), a concentrated gel, and that sarcoplasm contains some proteins that are globulin-like and others that are albuminous in nature. Bate-Smith (6) in 1937 listed four intracellular proteins, two of which, myosin and globulin X, were said to be globulins and two, myogen and myoalbumin, were albumins. He listed the percentage composition of each in muscle as the following: myosin, 63 per cent; globulin X, 9 per cent; and myogen and myoalbumin together, 10 per cent. The isoelectric points were reported as: myosin, pH 5.5; globulin X, pH 5.2; myogen, pH 6.5-6.7; and myoalbumin, pH 3.0-3.5.

Myosin has been studied more extensively than the other intracellular proteins. Astbury and Bell (3, pp. 696-697) state that the pattern of structure of myosin is similar to the keratin of mammalian hair and both belong to the large

- 5 -

group of fibrous proteins, the characteristics of which are summarized in these words:

> . . . that the structural unit of the group is a 'grid' consisting of long polypeptide chains crosslinked by means of their sidechains, that the main-chains of this grid are not normally in the extended configuration but are thrown into a sequence of folds transverse to the side-chains, and that when the fibers are stretched the grid is pulled out flat, only to return to its folded configuration when the tension is released.

The reversible transformation within the molecule from folded to extended form is said to be the basis of the long-range elastic properties of the fibrous proteins. Astbury and Dickinson(4) describe the myosin in muscle as being in the form of long chain-bundles of submicroscopic size extending approximately parallel to the axis of the muscle fiber. They state that the protein chains are normally in the folded configuration. They refer to "supercontraction" as the condition thought to exist when a muscle is placed in hot water or steam. More or deeper folds exist.

Astbury (2) reports the following values for the approximate number of amino acid residues (total 576) in what he calls the more reliable amino acids of rabbit myosin: cystine/2 plus cysteine, 8; methionine, 15; serine, 23; threonine, 21; tyrosine, 13; tryptophan, 3; aspartic acid plus amide, 45; glutamic acid plus amide, 101; arginine, 27; lysine, 47; histidine, 7; amides, 57. A small proportion of phosphorus is part of the permanent structure of myosin. He emphasizes the packing together of side chains in triads on alternate sides of the main chain and the alternate polar and nonpolar arrangement of individual side chains. He states that this kind of structural arrangement is in harmony with the concept that myosin "is both the working elastic mechanism in muscle and also a principal enzyme (adenosine triphosphatase) in the elastic cycle" (2, pp. 85-86).

Szent-Györgyi (33, 34, 35) published work in 1945, 1947, and 1948 in which myosin is recognized not as a single protein but as a complex made of two proteins. He assigned the name of actomyosin to the complex, retained the name of myosin for one of the proteins, and gave the new name of actin to the second protein. Since actin exists in both globular and fibrous forms, he designated the former as G-actin and the latter as F-actin. The complex has both globular and fibrous forms, G- and F-actomyosin, respectively. Szent-Györgyi enumerated several physical and chemical characteristics for each of these proteins. The protein he called myosin has an isoelectric point of pH 5.2, is soluble in water giving a limpid solution, behaves like a globulin except for solubility in water, has a tendency to form threads when slightly denatured, and is quantitatively precipitated from watery solution by small concentrations of neutral salts, such as KCl, but the precipitate dissolves

- 7 -

again if the concentration of salt is increased. In regard to the action of myosin with adenosine triphosphate, he states (33, p. 13): "The ATP adsorption is an exceedingly labile function of myosin . . . " He points out that as K is adsorbed, myosin becomes more and more capable of binding ATP also. Ca or Mg alone in low concentration does not cause ATP to be adsorbed, but in the presence of KCl they greatly increase the adsorption of ATP.

Actin is more stable than myosin, according to Szent-Györgyi (33). It has an isoelectric point of pH 4.7, is readily denatured by heat, and is not precipitated by alkali salts. The F- and G- forms have widely different properties and the transformation from one form to the other is thought to occur in each contraction cycle in living muscle. Factomyosin is formed from F-actin and myosin and is described by Szent-Györgyi as "a typically fibrous colloid with very long particles" (33, p. 24). G-actomyosin can be prepared by bringing about contraction of the F- form. In explaining the action of these proteins in muscle action, he pictures actomyosin as an elongated particle composed of two parallel parts, one of which is long and continuous (myosin) and the other of which (actin) is discontinuous and capable of becoming globular. The elongated part shrinks more rapidly than its partner, which causes the particle to bend into a circular shape. He represents the fibril as a spiral rod.

- 8 -

This spiral nature of myofibrils is questioned by Speidel (32). By the use of striated muscle from the sea spider, and, to a limited extent, muscles of shrimp, frog, and rabbit, Speidel was able to show by means of photomicrographs that the cross striae in the myofibrils are arranged transversely, not spirally.

Extracellular proteins

The principal extracellular or structural proteins in muscle are collagen and elastin. The chief characteristics of collagen, as stated by Bull (11), are the inelasticity at body temperature, the high content of proline and hydroxyproline, the ability to contract spontaneously to about onefourth of its length when heated to about 60°C., long range elasticity of the contracted fiber while hot, and the spontaneous partial recovery of length on immersion of the fiber in cold water after contraction. The thermally contracted collagen has an amorphous X-ray diffraction pattern. Astbury (2) states that few chemical analyses have been carried out on pure collagen fibers; gelatin has been analysed much more extensively. He reports that the X-ray patterns of collagen fibers and of oriented gelatin have the same main features but differ in certain details such as high spacings in true collagen that are lacking in the gelatin pattern. The general molecular plan of the collagen group is

- 9 -

a repetition of glycine and imino residues along the polypeptide chains at intervals of three residues.

An outstanding characteristic of elastin is its elastic quality at room temperature. Bull (11) states that the unstretched elastin from ligamentum nuchae has a completely amorphous diffraction pattern. Stretching to 200 per cent extension results in some orientation of X-ray spacings but no new spacings occur. He mentions the high proline content of elastin.

Denaturation of proteins

Mirsky (21) discusses denaturation of proteins in general, then considers a special case, that of denaturation of myosin. He points out that the most frequent signs of instability of protein, i.e., tendency to denature, are loss of solubility and loss or impairment of a specific property. Among the properties affected by denaturation, according to this author, are: crystal form, solubility, viscosity, chemical changes, reversibility, formation of fibers, and configuration. He states in connection with these properties that many native forms of proteins have been crystallized but not the denatured forms. He says that at the isoelectric point a denatured protein cannot be dissolved in neutral salts as can native globulins; that denatured proteins are more viscous than native ones; the number of SH, S-S, and phenol groups is increased by denaturation; and that denaturation is a change from a compact to an extended configuration. In writing of the reversibility of denaturation, he cites evidence that coagulation takes place in two steps, the first being reversible, the second not reversible, the latter occurring at a slightly higher temperature than the former. Anson (1) enumerates the following agents which can cause denaturation of protein to occur: heat, surface action, ultra-violet light, high pressure, organic solvents such as alcohol, and reagents which can dissolve coagulated protein such as acid, alkali, urea, detergents, and others. He states that the molecule of protein opens up and changes its shape during denaturation.

Variations among Muscles and among Animals

The manner in which meat is divided into retail cuts in the United States often results in the inclusion of several muscles in each steak, roast, or piece of meat to be cooked. Differences in tenderness, texture, and other characteristics of individual muscles make it difficult to secure uniformly well prepared meat. Ramsbottom and Strandine (28) made a systematic study of some of the physical differences among the major muscles constituting the beef carcass. Although they were primarily interested in the factors responsible for tenderness, they reported data on the identification,

- 11 -

location, composition, weight, pH, tenderness, and histological rating of 50 representative muscles in three heifer carcasses of the same grade. The variation in fat content of the muscles was found to be from an average of 1.5 per cent in the extensor carpi radialis of the foreshank to an average of 18.1 per cent for the intercostal muscles. The average moisture content of the first named muscle was 76 per cent. whereas the latter contained 62.5 per cent moisture. The average fat content of all muscles was 5.7 per cent; the moisture, 72.2 per cent. The average weight of the smallest muscle studied (sartorius) was 0.4 pound; of the largest (biceps femoris) 10.2 pounds. Comparisons of tenderness were made by means of (1) histological rating of collagenous and of elastic connective tissue content, (2) shear force of both raw and cooked beef, and (3) judges' scores for tenderness of the cooked meat. The lowest average shear force for a 1/2-inch cylinder of raw beef was 3.8 pounds for the longissimus dorsi muscle; the highest, 26.0 pounds for the cutaneous muscle. For the cooked beef, the average shear force values varied from 7.1 pounds (psoas muscles) to 16.3 pounds (rhomboideus). Correlations that were statistically significant were found between the histological rating of the raw beef and the shear force of the cooked meat.

Prudent (27) used a chemical method for determination of collagen and elastin in four beef muscles from each of two

- 12 -

animals. She found differences among the muscles and between the animals in the percentages of the collagen and elastin nitrogen in relation to total nitrogen. The dairy cow (carcass grade Cutter) had a higher collagen nitrogen but a lower elastin nitrogen content than the steer (carcass grade Good). She stated that the muscles of the cow were smaller than those of the steer and that the fat and connective tissue of the cow were bright yellow.

Paul (23) found a significant difference in the diameters of muscle fibers in various muscles as revealed by histological study. The differences among muscles were highly significant after the meat was cooked. She grouped the muscles according to diameter of fibers as follows: smallest, semitendinosus, pscas major, adductor; medium, semimembranosus and biceps femoris; largest, vasti. The gastrocnemius muscle had the largest fibers but they shrank the most, hence did not fit well into the arbitrary groups. She found there was no high correlation between the number of muscle fibers per bundle and the tenderness of the meat.

Harrison (18) compared the histological characteristics of four muscles from three grades of animals and found the pscas major muscle, which is the most tender of the four, had slender fibers with distinct cross strike. There was little connective tissue in the pscas muscle compared to moderate or

- 13 -

large amounts in the others. The muscle fibers of the older animal were more gnarled and worn than those in the younger animals. Fat located between the muscle fibers was noticeable in the aged animal. The sections from two animals contained larger amounts of collagen than sections from the other two.

Deatherage and Harsham (15) found differences in the initial tenderness levels of beef cattle as revealed by judges' scores for tenderness of broiled steak the second or third day after slaughter of the animals. Paul and McLean (25) used roasts from veal calves of three different carcass weights, approximately 50, 125, and 200 pounds. After roasting to internal temperatures of 71°, 77°, 82°, or 88°C., the cuts from the smallest animal were judged to be the most tender, even though this meat had no apparent intramuscular fat and very little fat between the muscles.

In another phase of the study Paul and McLean (26) observed variations in the histological structure of the muscles from the hind quarter of veal. Differences in amounts of connective tissue and in size of fasciculi were marked. The semitendinosus and the biceps femoris muscles were judged after cooking as the juiciest of the muscles studied. The former of these muscles (judged to be tender as well as juicy) had much connective tissue with abundant elastic fibers

- 14 -

and the fasciculi were medium in size. The latter muscle had thick masses of connective tissue in the perimysium but most of the fibers were collagenous rather than elastic. The semimembranosus was described as the driest and one of the toughest of the muscles studied. The connective tissue was relatively small in amount and most of the fibers were of the collagenous type.

Influence of pH

According to Fenn and Maurer (16), the pH of intercellular fluids in living tissue (frog muscle) is 7.3 to 7.5 and the pH of the interior fibers is 6.9 or lower. They state that post mortem a pH of 5.6 to 6.0 is common and a value of 5.3 is possible. Bate-Smith (7) states that he found a range of pH values of 5.36 to 5.80 for the psoas muscles of beef from 29 carcasses and a range of 5.5 to 6.0 for the pH of thigh muscles from 6 other beef animals. He makes the statement that a variation in pH between 5.4 and 6.0, except for occasional values outside this range, may be expected for beef in full rigor. Ramsbottom et al. (29) in their study of 25 representative beef muscles found a range of pH values from 5.5 to 5.8. In a later work on 50 beef muscles, Ramsbottom and Strandine (28) reported a range of 5.5 to 6.0 and an average pH of 5.7.

Hall, Latschar, and Mackintosh (17) in studying the problem of "dark cutting" beef found this kind of beef to have an abnormally high pH. Among the other characteristics observed were "low glucose, practically no glycogen, high inorganic phosphate, low oxidation potential, and rapid oxygen uptake" (17, p. 81). They give the value of pH 6.4 as characteristic of black beef and 5.4 for light beef. They found approximately 900 milligrams lactic acid per 100 grams bright rib eye meat having a pH of 5.50, whereas the addition of approximately 450 milligrams of lactic or pyruvic acid was required to bring the pH of 100 grams of beef rib eye from pH 6.50 to 5.50. They conclude that the difference of primary importance between bright and dark beef is the difference in the amount of lactic acid present. They say the cause of dark cutting beef appears to be a deficiency of glycogen in the tissues at the time of slaughter.

Winkler (39) was able to show a relationship between the color of beef and its pH. He injected samples of minced pork and of beef with solutions of dilute lactic acid or of ammonia, stored the samples at 0° C. for 3 to 5 days, and by means of a color comparator determined differences in color and in the scatter of the wave bands. Choosing the curve for the scatter of the red band for pork as typical (although the pH curve for beef is said to be similar), he points out that from pH about 4.5 to 5.5 the meat becomes lighter

- 16 -

and beyond 5.5 darker in color. In another phase of the study Winkler (40) tested the work required to shear raw beef and pork samples (loin of beef from three animals) in which the pH values had been adjusted by injection of lactic acid or ammonia solutions. He concluded that the "addition of sufficient lactic acid or ammonia to raw pork or beef made the meat more tender" (40, p. 13). He pointed out a greater variability in tenderness in beef from different animals than in pork, even though the samples were at the same pH.

Bate-Smith (7) in reviewing the significance of pH in the ripening of beef enumerates these characteristics of meat at the upper end of the pH range: dark color, slimy or sticky feel, flabbiness, juice not readily expressed, high electrical resistance; salt does not readily penetrate it from curing pickle. He refers to them as defects in the meat and believes they are related to the substance of which the fibrils of the muscle is composed. The main protein constituent, myosin, has an isoelectric point a little above pH 5.3 at which point there is minimum of swelling. He describes the myosin of living muscle as a weak jelly, and states that as the pH falls this jelly shrinks; at pH 6.5 to 6.0 the fibrils shrink apart and scatter light. He attributes high electrical resistance and high pH to swelling of the fibers and the accompanying narrowness of the channels through which ions can move freely. The stickiness at high pH's he

- 17 -

says is due not only to swelling of the fibers but also to some dissolution of myosin.

Post-mortem Changes during Aging of Beef

The outstanding change which occurs soon after slaughter. of the animal is a stiffening of the muscles, i.e., the development of rigor mortis. Bate-Smith (7) in writing of rigor mortis and aging of beef relates rigor to glycolysis and the breakdown of adenosine triphosphate. The lactic acid produced from the glycogen acidifies the muscle so that the pH steadily falls from near 7.4 as circulation stops. He emphasizes that the production of acid is not the cause of rigor mortis even though a change in pH greatly affects the physical characteristics of myosin. He states (7, p. 7) that "when sufficient acid is produced, rigor always sets in when the muscle reaches a pH in the neighborhood of 6.3." The removal of adenosine triphosphate from muscle is cited by him as the immediate cause of the stiffening in muscle during He does not state how rigor is resolved, but says rigor. (7, p. 33):

> The actual cause of the increase in tenderness during the ripening process has not been elucidated. The most likely theory is that it is due to proteolysis by tissue proteinase, such as cathepsin.

Paul, Lowe, and McClurg (24) noted a difference in the

- 18 -

fat of roasts cooked without storage and of those aged 1 day or longer. In the former the fat was soft and oily, whereas the fat of the latter was firm and brittle. The surface of roasts stored for 0 or 1 day was dry; those stored 2 and 4 days were moist; by the 9th day moisture collected in the paper about the roasts but the surface of the meat was fairly dry: and at 18 days the surface was sticky. The roasts cooked without storage developed rigor during the roasting process, with the exception of the psoas major which had become stiff before it was put into the oven. The psoas was out of rigor by the time the roasting was completed, but the other muscles were stiff, hard, and very difficult to cut. The authors (24, p. 224) describe the procedure of trying to cut the meat in rigor as "similar to cutting a rubber cork." The stored roasts were out of rigor when cooked and the tenderness increased up to the 9th day of storage. With 18 days of storage the results were variable. Deatherage and Harsham (15) compared the tenderness of beef at various intervals of storage up to 41 days. They found a fairly consistent tenderizing effect with increased storage up to 17 days; after that time some carcasses continued to increase steadily in tenderness and others became more tough at one or more of the aging periods.

Harrison (18) compared the tenderness of three grades of beef after aging periods of 1, 2, 5, 10, 20, and 30 days.

- 19 -

The average scores for all roasts indicated a gradual increase in tenderness as aging progressed, with the greatest increase occurring in the first 10 days. For individual muscles the relation of tenderness to time of aging was not always linear. She studied the histological structure of muscles at the different storage periods. Disintegration of muscle fibers was evident at about the 10th day of storage in three of the four animals and became increasingly evident at the 20th and 30th days of aging. This disintegration was described as consisting of destruction of the striae in strips of the muscle fibers, resulting in increased fragility of fibers.

Prudent (27) analyzed samples of meat from two of the animals of Harrison's study to determine the amount of chemical breakdown occurring in collagen and elastin during storage of the meat. She found that the length of the storage period had little if any effect on the degradation of collagen and elastin of the muscles studied. The tenderizing effect which had occurred, as shown in the findings of Harrison (18), could not be explained on the basis of the degradation of collagen and elastin during storage. Mathed at family.

The length of the storage period has an effect on other factors of beef than tenderness. Paul (23) reported an increase in electrical conductivity with storage. Juiciness, as indicated by judges' scores, gradually increased with storage time; the amount of press fluid dropped markedly from

- 20 -

the 2d to the 9th day of storage, then rose to a high figure at the 18th day. The aroma scores increased up to 9 days, but dropped after 18 days of storage. The flavor of fat became less desirable with the increased length of storage period; by 18 days it had developed rancidity.

Paul measured the pH of raw beef from various muscles during aging periods of 0, 1, 2, 4, 9, and 18 days. She states that the changes during storage followed the usual pattern, namely, "a drop followed by a slow rise" (23, p. 69). The changes in pH during storage were computed to be highly significant and the differences between muscles to be significant. The muscles having the highest pH were also said to have had the strongest odor of any of the aged roasts before cooking.

Harrison (18) reported acidification of muscle post mortem and described the change as rapid during the first 1 to 2 hours. There was a slow rise in the pH of the muscles during storage. The average values for all muscles for 1, 2, 5, 10, 20, and 30 days of aging were 5.47, 5.45, 5.47, 5.49, 5.51, and 5.88, respectively.

The weight lost by roasts during various aging periods was determined by Harrison (18). The loss was greatest for the meat from the carcasses graded Good; intermediate, for the meat from the carcass graded Commercial; least, for that

- 21 -

from the carcass of Cutter grade. The roasts lost slightly more weight as the aging time increased. Muscles differed in the amount of weight lost during aging.

Changes during the Cooking of Beef

The changes that occur during the cooking of beef are so complex that it is very difficult to determine the role of the individual factors. Some studies have been made of the effect of heating on portions of animal tissue composed principally of collagenous or of elastic tissue, i.e., of tendons and of ligaments, respectively.

Changes in tendons and ligaments

Earrison (18) used strips of tendon from around the anterior end of the longissimus dorsi muscle and from the Achilles tendon. The strips were heated in distilled water at 60° , 65° , 70° , and 95° C. for periods varying from 15 seconds to 30 minutes. She reported a progressive decrease in length of tendons as the temperature was increased. With increased length of time of heating, the length was found to decrease in the first stages, with no further shortening occurring as heating was continued. Softening occurred that was evident in the lower shear force values for the heated than for unheated samples. Strips of ligamentum nuchae were heated in distilled water at 70° and at 95° C. for 30 minutes,

and for 1 and 2 hours. The strips became thicker and wider on heating than when raw. They tended to decrease in length with cooking but the changes were small compared to those in the tendons. Considerable variation in results was noted among animals and even among samples from the same animal. The shear force values for the ligaments heated at 95° or 70°C, showed evidence of a tenderizing effect on the elastic tissue. This is contrary to the belief that cooking does not affect elastic tissue.

Ramsbottom et al. (29) compared the relative tenderness of raw connective tissue from the infraspinatus and biceps femoris muscles and found that more than 120 pounds (the capacity of the shearing device) were required to shear it. After cooking, the force required was 21.5 pounds. Yellow elastic tissue (ligamentum nuchae) had a shear force value of 81.1 pounds raw and 42.3 pounds cooked. Fatty tissue improved materially in tenderness during cooking irrespective of the content of connective tissue. The rectus femoris muscle increased in toughness on cooking. Hence these authors concluded that factors other than connective tissue and fat have a considerable effect on tenderness of meat. They state that coagulation and denaturation of protein are among the factors which have a greater negative effect than the positive effect of partial hydrolysis of collagen.

- 23 -

Changes in meat

Ramsbottom and Strandine (28) tested the theory that cooking tenderizes beef. In their study of 50 representative muscles from three heifer carcasses graded Good, they found that cooking the meat to an internal temperature of $76.7^{\circ}C$. $(170^{\circ}F.)$ in lard at $121.1^{\circ}C.$ ($250^{\circ}F.$) resulted in shear force values that were higher than for the raw meat for 35 of the 50 muscles. These results indicated a decrease in tenderness with cooking. Ramsbottom et al. (29) reported that in preliminary tests the beef cooked in lard at $121.1^{\circ}C.$ ($250^{\circ}F.$) cooked more quickly to $170^{\circ}F.$ than in the oven at $162.8^{\circ}C.$ ($325^{\circ}F.$). The oven-cooked meat was consistently more tender and had less variability between muscles than the meat cooked in deep fat.

Cover (12) studied the effect of extremely low rates of heat penetration in relation to tenderness of beef. Two oven temperatures were used, 80° C. (176° F.) for the experimental roasts and 125° C. (257° F.) for the controls. She found that the well-done stage as judged by subjective methods was reached at an internal temperature of 70° C. for the experimental roasts compared to an internal temperature of 80° C. for the control roasts. Similarly, the rare stage was reached at 58° or 59° C. with extremely slow roasting and at 63° C. with roasting at 125° C. A very much longer time in the oven was

- 24 -

required at 80°C. than at 125°C. to reach a given internal temperature. The roasts cooked slowly were reported to be more tender by all measures than those cooked at the higher temperature. Without exception, the roasts which required as much as 30 hours (in the 80°C. oven) to lose their pink color were tender, but the roasts cooked a shorter time (in either oven) were not always tender. Roasts from the extremely slow oven lacked the usual plump appearance; those cooked to the well-done stage were so tender as to offer no resistance to cutting or chewing and the texture was described as mealy or powdery in the mouth. The actual moisture content was not determined, but the meat seemed dry as it was chewed.

In the study of veal roasts cooked in ovens at 163°C. (325°F.), Paul and McLean (25) found that in general the color and the palatability factors (flavor, texture, and tenderness) improved with each increase of internal temperature (71°, 77°, 82°, and 88°C.) for the three sizes of animals. Juiciness decreased with increased internal temperature. Cooking losses and the cooking time increased as the internal temperature was increased. The amount of soluble nitrogen in the meat, contrary to the trend expected if collagen is changed to gelatin, showed a decrease from the raw meat through the various stages of cooking. The histological changes observed in the connective tissue of the cooked yeal were of two types: (1) an apparent swelling or

- 25 -

"spreading" of the collagenous fibers particularly in the semitendinosus muscle, but no change in the elastic fibers, and (2) a disruption in the fine connective tissue sheath (endomysium) of the individual muscle fibers. Both of these changes would contribute to increased tenderness in the meat. They further point out that there was some evidence of disruption in the sarcolemma of the muscle fibers during cooking. This was shown as a change in the edges of the muscle fibers from a smooth, straight appearance in the raw veal to a rough, irregular outline in the roasted meat. The staining reaction of the cooked connective tissue was observed to be less intense than that of the raw tissue. These authors describe in some detail the distribution and character of the collagenous and elastic tissue in each of the several muscles studied. (See Paul and McLean, 26.)

Bell et al. (9) used a chemical method for measuring the tenderizing effect of cooking on meat. For beef boiled in an excess of water to 85° C., they reported a conversion of collagen to gelatin to the extent of about 22 per cent. The percentage of protein represented by gelatin in the raw meat was 10.86 and that in the cooked meat was 8.37. Prudent (27) secured results of an opposite nature. She found by chemical determinations that cooking to 70° C. by immersion in fat at 96° to 98° C. resulted in little if any changes in the collagen and elastin content of the muscles studied.

- 26 -

The pH values for cooked meat have been reported to be slightly higher than for uncooked meat. Harrison (18) found average pH values of 5.76, 5.74, 5.77, 5.78, 5.73, and 5.87, respectively, for the cooked roasts aged for 1, 2, 5, 10, 20, and 30 days. Bendall (10) cooked beef at 100°C. for 1 hour and found considerable shift to the alkaline side.

Aroma and Flavor of Beef

Crocker (14) has made a critical analysis of the flavor of unaged beef and of the influence of boiling and of lowtemperature heating on the flavor. He states that the flavor of raw meat is mostly in the juice, not the fiber, and that the flavor is "weak, sweetish, salty and generally blood-like" (14, p. 180). He says that most of the flavor of cooked meat comes from the meat fiber. He describes the flavor of cooked beef in these words (14, p. 180):

> This meaty flavor, typical of cold roast beef or pot roast, was apparently due to volatile substance detected by the sense of smell, even though chewing was needed to release it. It was fragrant, moderately acidic, only slightly burnt, and distinctly caprylic. It was definitely sulfury.

He says that cooked meat flavor is essentially an odor, for only a trace of sweetness was evident when the nostrils were held. Some astringency in the mouth was noted. The effect of length of time of boiling was studied and the flavor of cooked beef was found to increase up to 3 1/2 hours of boiling, whereas after that time a gradual loss of flavor occurred. Beef boiled in a citric acid solution (2 per cent strength based on the weight of the meat) had an acetic-like odor and caprylic flavor resembling corned beef. The pH of the raw beef was 6, that of the meat cooked in citric acid solution was 3.5. Beef boiled in 1 per cent sodium bicarbonate solution developed a pH of 8.87 and was said (14, p. 180) to have "an aminic and sulfury odor, suggestive of both clams and eggs, with some piperidine evident" and the taste was described as "very weak." Beef bones were found to contribute almost no flavor but gave gelatin and tallow to preparations. Marrow and tissue fats were said to contribute little meat flavor.

Effect of Added Substances

In some preliminary investigations Sair and Cook (30) observed a relationship between the amount of drip from meat (prior to freezing) and the pH of the tissues. They decided to extend the study of this relationship by artificially adjusting the pH of meat samples. They injected 20 milliliters of lactic acid or ammonium hydroxide of suitable concentration into 800- to 900-gram pieces of pork, beef, and mutton with a calibrated 5-milliliter hypodermic syringe. The injections were made at numerous uniformly distributed points. Those samples not requiring an adjustment of pH were

- 28 -
injected with 20 milliliters of distilled water. After storage of the injected samples for 3 days at 0°C., the samples were minced and divided into experimental lots, some to be frozen and others to be left unfrozen as controls. These investigators found a marked relation between the amount of drip and the pH of the meat. The maximum drip was obtained between pH 5.0 and pH 5.2 for all three kinds of meat. They plotted curves for the drip from the frozen (total) and unfrozen (control) samples. The curves descended slightly on the acid side to pH 4.4 (the lowest pH value tested) and also descended, but more sharply, on the alkaline side to about pH 6.4. At pH 6.4 the difference in the drip from the control and frozen samples (net drip, difference between amount for control and frozen samples) became zero and the amount of drip was very small. The shape of the drip curves was nearly identical for the three kinds of meat, but the quantity of liquid exuding from unfrozen beef was slightly less than the amount from pork or mutton.

Snyder (31) studied the effect on cooking losses of the addition of salt to the surface of beef roasts before roasting and of the addition of salt to beef stew before cooking. She reported the formation of a crusty outside layer and a penetration of salt flavor to the depth of less than 1/2 inch below the surface of the roasts. There was a development of gray color within the meat which corresponded to the depth of

- 29 -

penetration of salt flavor. In the case of the stews there was said to be no texture or color differences in the salted and unsalted cubes, but there was an improvement in flavor due to the addition of salt.

Crain (13) and Tofte (37) treated 3-inch cubes of beef with three types of brining solutions: (1) salt, 10 gm. to 100 cc. water, (2) vinegar, 25 cc. to 75 cc. water, and (3) salt and sugar, 7.5 gm. of each to 100 cc. water. After standing in the brining solution for 72 hours in the refrigerator, the cubes of meat were seared, then cooked in covered stew pan or Dutch oven to an interior temperature of 205°F. (200°F. in the case of the vinegar-treated meat). The brined samples gained in weight prior to cooking; the controls lost weight. Cooking losses were higher, however, for the brined than for the unbrined samples. The vinegar-treated meat had a lower pH than the controls, but the difference was more marked in surface samples than in those from the interior. The pH values were generally higher for cooked than for raw Tofte reported low pH's for vinegar-treated samples meat. even after cooking, but Crain found no significant differences after cooking due to vinegar treatment. All three brining treatments resulted in tenderization of the meat, except for one animal reported by Tofte, the meat of which was moderately tender before brining. The judges generally preferred the brined meat to the controls in flavor and in

- 30 -

juiciness, but the differences were much greater for salt or salt-sugar treatment than for vinegar. Scores for aroma were variable but in general were slightly higher in brined than in control samples.

Both investigators (13, 37) described color changes in the brined samples. The vinegar-treated meat became purplish gray in the outer portions and was dark on cooking; salttreated meat was slightly gray. Many samples immersed in the salt or the salt-sugar solution developed iridescence on the surface; only a few control or vinegar-treated samples had this characteristic. Brined samples failed to develop a brown exterior during searing. Tofte (37) studied the histological effect of brining the beef cubes. She found a decrease in the distinctness of outline of the muscle fibers 1997 1997 1997 1997 and decreased clarity in differential staining of connective tissue and muscle fibers as a result of the brining treatment. In the slides of cooked meat the collagen was barely apparent; the elastin showed no perceptible change. The amorphous appearance of brined meat and the differences between surface and interior samples of vinegar-treated meat were less marked after cooking than while raw.

Bate-Smith (8) reported the use of phosphate solution to aid in tenderization of beef. The concentration giving the greatest effect was 0.2 M, but an appreciable effect was noted with a fourth of that concentration. A suitable mixture of mono- and di-hydrogen phosphate to give a pH value between 6 and 7 was used. The addition of concentrated meat stock from previous cooking was recommended by this investigator as an alternative method of securing a tenderizing effect. Lowe (19) describes short studies in which 0.2 M and 0.4 M mixtures of NaH₂PO₄ and Na₂HPO₄ were added to stews or in which the beef was brined in the phosphate solutions. The addition of broth to stews was also studied. Results for any of these treatments varied with the size of the beef cubes. In small cubes, the salt solution penetrated a larger proportion of the cube and tenderizing occurred. There was less effect on large cubes. The flavor of the treated samples was generally preferred by judges to that of the meat left untreated.

The immersion of cuts of beef in solutions of calcium chloride was also reported by Lowe (19). The lower concentrations (0.1 M and 0.2 M) had no appreciable effect on shearing strength, press fluid, or the qualities tested subjectively. The higher concentrations (0.4 M and 0.5 M) imparted a bitter flavor. Some weight gains and a higher content of calcium in the brined than in the unbrined meat were found, but the differences were less marked in cooked than in raw samples.

- 32 -

Canning Procedures

Directions for the commercial preparation and processing of various fruits and vegetables are available in the literature, but the references for commercially canned meats are very limited. A bulletin of the National Canners Association Research Laboratory (22), which outlines canning methods for several low-acid foods in metal containers, provides no time or temperature tables for meat and meat products but refers the reader to directions from research laboratories connected with the canning industry.

The Bureau of Human Nutrition and Home Economics (38) has published a bulletin for use in the home canning of meats. The directions for the raw packing of beef, veal, pork, or lamb as large pieces include the following selected points: trimming away excess fat, placing pieces of meat in the cans with the grain of the meat running lengthwise, filling tin cans to the top with raw meat, preheating the open cans of meat in water extending to about 2 inches below the rim for a period of about 50 minutes in tin cans or to 170° F. for the meat at the center of the jar, sealing tin cans, and processing at once in a steam-pressure canner at 10 pounds pressure (240° F.) for 65 minutes for number 2 tin cans (75 minutes for pint and 90 minutes for quart glass jars).

- 33 -

A technical bulletin by Toepfer et al. (36) reports the findings from experiments in processing inoculated packs of low-acid foods by home canning methods. Recommendations were formulated for various foods in certain sizes of cans based on the data from the heat penetration studies. For pork and beef, the recommended processing temperature is 240°F. and the time periods for certain sizes of cans are the following: beef in quart jars, 90 minutes; pork in quart jars, pint jars, number 3 or number 2 1/2 cans, and number 2 cans, respectively, 90, 90, 75, and 65 minutes. These investigators point out that the processes may be more severe than necessary for home canning, but no reduction is advisable until sufficient data on heat resistance and thermal-death-time curves of spoilage organisms in food media are available.

EXPERIMENTAL PROCEDURE

Preliminary Investigations

In the preliminary part of the study, several different substances were tested for their effect on the slicing quality and palatability of canned beef. Solutions of phosphate, of chloride, and of acid in various concentrations and mixtures were used, and the injected meat was stored for different lengths of time before canning. For example, a solution of mono- and di-sodium phosphate in 0.1 M and 0.2 M concentrations was used for injection of beef cuts and the meat was aged for 4, 9, or 14 days. Some other solutions tested were sodium chloride and a mixture of sodium chloride with lactic acid or with mono-sodium phosphate for three different aging periods. A few cuts of meat were injected with calcium hydrogen phosphate solution or with this substance in combination with sodium chloride. A few experiments were done in which the solution used for injection was one of the following: ascorbic acid, ascorbic acid and sodium chloride, or ascorbic acid, sodium chloride, and lactic acid.

Little or no improvement in slicing quality was noted for injected samples in comparison with control samples with phosphate or ascorbic acid treatment. Samples treated with

- 35 -

sodium chloride, even though they showed no improvement in sliceability, were found to be much more tender than the controls. An improvement in the texture of the meat was noted and the flavor was more desirable than in the untreated samples. Sodium chloride-lactic acid-treated samples showed slicing quality that was slightly improved or similar to that of the control samples without impairment in palatability.

On the basis of these preliminary findings, the treatments selected for further investigation were the use of the following three kinds of solutions for injection of the raw beef prior to aging and canning: (1) sodium chloride, (2) lactic acid, and (3) a mixture of sodium chloride and lactic acid.

Selection of Animals

Five animals were used in the study after a period in which meat from the same number of animals had been used in preliminary investigations. All the animals were procured by the Animal Husbandry Department of the College. Four animals were steers of beef type purchased from a farmer near Ames, and the fifth was an aged dairy cow purchased from another farmer. The four steers were identified as Animals VI, VII, VIII, and IX, respectively, and the cow, as Animal X. The carcass grade of each of the steers was Commercial and that of the cow was Cutter in accordance with U. S. Government standards.

Slaughter of Animals, Separation of Muscles, and Division into Cuts

Each of the animals was slaughtered in the Animal Husbandry abattoir by E. A. Kline, Instructor in Animal Husbandry, and Julius T. Jensen, Meat Laboratory Assistant, or by students under their direction. The carcass was divided into halves and the two sides of beef were allowed to hang in the cooler at 34° to 36° F. until the following day. The sides of beef were divided into quarters between the 12th and 13th ribs and matching pairs of muscles were separated from the carcass. Belle Lowe, Professor of Foods and Nutrition, Alma R. Plagge, Kesearch Associate, and the author separated the muscles from the carcass, divided the muscles into cuts, and carried on the preparation of the meat for canning and subsequent testing.

The muscles selected for use because of their suitable size, shape, and structure were the following: (1) longissimus dorsi, loin portion, (2) longissimus dorsi, rib portion, (3) psoas major and psoas minor, (4) semitendinosus, (5) semimembranosus, and (6) biceps femoris.

Before division into cuts, the extraneous fat and heavy

- 37 -

connective tissue were trimmed from the muscle. From three positions within each muscle, small samples of meat were taken for histological and for pH determinations. The location of each position is indicated in the diagram of the respective muscle (Figures 1, 2, 3, 4, and 5). The approximate size of each histological sample was 3 cm. x l cm. x l cm. The sample was cut in half crosswise and the two pieces were placed in an individual bottle of formalin-physiological salt solution for fixation. Each sample for pH determination was cut to a weight of 10 grams, wrapped individually in moisture-vapor-proof cellophane, and frozen at -30° F. to be kept for later assay.

The size and general shape of the beef muscles used in the study were suited to canning in the number 2 size of tin can (diameter, 3 7/16 inches; height, 4 9/16 inches). Some advantages were that peices of meat approximately the size of the container could be cut from the muscles, the canning procedures could be carried out to advantage, and suitable samples for testing could be secured from the canned meat. For the experimental work of the problem, cuts of beef were needed which would be large enough to fit the container after removal of pH and histological samples and which would provide for losses in weight during aging. By dividing each of the smaller muscles into three parts and the larger muscles into six parts, pieces of approximately the desired

- 38 -

Figure 1. Longissimus Dorsi Muscle.

А, В	, ar	nd () -	Cuts of beef for canning.
	a ar	nd I	o_' -	Histological and pH samples, respectively. from muscle
a da sera da s Terra da sera d Terra da sera d				before division into cuts and after aging one day.
	c ar	nd (3 -	Histological and pH samples, respectively, from beef cuts aged eight days.
	e ar	nd 1	- 2	Histological and pH samples, respectively, from canned beef.
g, h	, ar	nd :	i -	Slices for scoring by judges.

Figure 2. Pscas Major and Pscas Minor Muscles.

- A, B, and C Cuts of beef for canning.
 - a and b Histological and pH samples, respectively, from muscle before division into cuts and after aging one day.
 - c and d Histological and pH samples, respectively, from beef cuts aged eight days.
 - e and f Histological and pH samples, respectively, from canned beef.

g, h, and i - Slices for scoring by judges.

6

Division of the Psoas Major and Psoas Minor

Psoas Major and Psoas Minor Muscles.

Figure 3. Semitendinosus Muscle.

A,	Β,	and	C	-	Cuts of beef for canning.
	8	and	b	*	Histological and pH samples, respectively, from muscle
				•	before division into cuts and after aging one day.
	C	and	đ	-	Histological and pH samples, respectively, from beef cuts aged eight days.
	•	and	ſ	-	Histological and pH samples, respectively. from canned
				. ,	beef.

g, h, and i - Slices for scoring by judges.

Figure 3. Semitendinosus Muscle.

Figure 4. Semimembranosus Muscle.

ر ما دون المم المار الم

A,	Β,	C,	D,		
· · ·	E,	and	F	-	Cuts of beef for canning.
	2	and	þ	.	Histological and pH samples, respectively, from muscle before division into cuts and after aging one day.
	C	and	đ	. .	Histological and pH samples, respectively, from beef cuts aged eight days.
		and	f		Histological and pH samples, respectively, from canned beef.
,					

g, h, and i - Slices for scoring by judges.

4

Division of the Semimembranosus

Figure 4.

Semimembranosus Muscle.

Figure 5. Biceps Femoris Muscle.

A	, B,	, C,	D,		
	E,	and	F	**	Cuts of beef for canning.
	8	and	b	-	Histological and pH samples, respectively, from muscle before division into cuts and after aging one day.
	C	and	đ	•	Histological and pH samples, respectively, from beef cuts aged eight days.
	8	and	ſ	-	Histological and pH samples, respectively, from canned beef.
g,	h,	and	1		Slices for scoring by judges

size were obtained. The pieces were trimmed to approximately 600-gram weight (600 to 610 grams). When the piece was already smaller than the desired weight (in only a few cases), a second piece or "filler" of meat from the same animal was included to make a suitable total weight.

The weight of each of the matching cuts of meat, trimmed to size as indicated, was recorded and each cut was labeled to indicate sample number and orientation within the muscle. Glass beakers of 600-milliliter capacity had been provided for storage of the individual cuts of meat. The piece of meat in each case was put into the beaker so the anterior (or proximal) end was uppermost. Control samples (those from the left side of the carcass) were covered with moisture-vaporproof cellophane held in place with a rubber band, and were placed in the cooler at 34° to 36°F. for aging. Samples to be injected (those from the right side of the carcass) were placed in the beakers and the injection was carried out, as described in another part of this paper, with the beaker serving as container for any solution that separated from the The control samples were left uninjected so they would meat. be representative of beef as it is usually canned.

- 49 -

Injection of Cuts of Meat

Equipment

The needles used for injection of the meat were made at the College Instrument Shop and consisted of 4 hypodermic needles mounted 3/4 inch apart in the shape of a square. Each needle was approximately 3 inches long and had a bore of approximately 1/16 inch. The instrument was screwed into the nozzle of a pressure pump (one regularly used by the Animal Husbandry Department for injecting hams and shoulders of pork). The pressure exerted by the pump was 30 pounds per square inch when the hand-control lever was pressed to the limit. By insertion of a wedge below this lever, the device was operated at a pressure slightly under 30 pounds.

Solutions used for injection

Three kinds of solutions were used for injection of the meat. The sodium chloride solution was made in 15 per cent strength by using the proportion of 150 grams of chemically pure sodium chloride made to 1000 milliliters with distilled water. The solution was stirred until the salt dissolved and was then filtered. Salimeter and temperature readings were taken. In each case the temperature was 22°C. (71.6°F.) and the salimeter reading showed a saturation of 51 per cent. (According to the statement on the instrument, 100 per cent

- 50 -

saturation equals 26.395 per cent sodium chloride, and the instrument is calibrated to show the saturation at $60^{\circ}F.$)

The lactic acid solution was made by adding lactic acid (85 per cent strength) to distilled water until the solution gave readings of pH 3.4 when tested with the pH meter. Very small amounts of lactic acid were added at one time and repeated readings were taken until the desired pH had been reached.

The solution containing a mixture of sodium chloride and lactic acid was made by using a portion of the 15 per cent sodium chloride solution already described and adding very small amounts of lactic acid (85 per cent strength) to it until repeated readings of the pH meter indicated a pH of 3.4 for the solution.

The quantity of each of the three solutions made for the treatment of the meat samples from each animal was 3500 milliliters (approximately 1 gallon). The solutions were stored in glass jugs in the refrigerator at 4° C. for 1 or 2 days. Several hours prior to use for injection of samples, the containers of solution were removed from the refrigerator and allowed to come to laboratory temperature (17° to 19° C.).

Method of injection

As has been stated, beef cuts from the right side of the

- 51 -

carcass were injected and the matching cuts from the left side were used uninjected as controls. Since three or six cuts had been secured from each muscle, it was possible to treat one cut from each muscle, or two cuts in the case of the large muscles, with each of the three solutions. For Animal VI, the particular cut from each muscle to receive a particular kind of treatment was determined by random selection; for succeeding animals, the order was rotated. The design for treatment of the cuts from each animal is shown in Table 1.

Preliminary experiments had indicated that injection to approximately 10 per cent increase in weight per cut would be a suitable working standard. Since the samples had been trimmed to weights within the range of 600 to 610 grams, it was decided to inject the samples so that the weight of sample plus injecting solution was 60 grams above that of the sample itself. Preliminary work had also shown that even though the liquid was injected into the meat, some of it tended to flow from the cut surfaces. By having the piece of meat in the beaker while it was being injected and during subsequent storage, this liquid was held in close contact with the meat, even though all of it did not stay within the interior.

With the beaker of meat resting on one pan of a laboratory balance and weights sufficient for a 60-gram increase on the other pan, the 4-needle hypodermic instrument was inserted

- 52 -

Animal Onloride Acid And lactic Acid no. Posi-Sample Posi-Sample Posi-Sample Posi-Sample 100 no. tion no. tion no. Vince A 162 B 163 C 164 VI A 162 B 163 C 164 VI C 188 A 186 B 187 VII C 188 A 186 B 187 VII C 188 A 186 B 187 VII B 211 C 212 A 210 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VI B 214 A 213 C	A	So	dium	La	ctic	Sodium d	Sodium chloride		
No. Posi- Sample Posi- Sample Posi- Sample tion no. tion no. tion no. tion no. Longissimus dorsi, loin portion VI A 162 B 163 C 164 VII G 188 A 186 B 187 VII B 211 C 212 A 210 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VII C 167 B 166 A 165 VII C 167 B 166 A 165 VII B 214 A 213 C 214 VI A 168 C 170 B 169 VII B 193 A 192 C <td< th=""><th>Animal</th><th><u>chi</u></th><th>oride</th><th>8</th><th><u>010</u></th><th>and lac</th><th>tic acid</th></td<>	Animal	<u>chi</u>	oride	8	<u>010</u>	and lac	tic acid		
tion no. tion no. tion no. Longissimus dorsi, loin portion VI A 162 B 163 C 164 VI A 162 B 163 C 164 VII C 188 A 186 B 187 VII B 211 C 212 A 210 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VII A 189 C 191 B 192 215 IX C 236 B 238 A 237 X A 261 C 263 B 262 VII B 193 A 192 C 194 VII </th <th>no.</th> <th>Posi-</th> <th>Sample</th> <th>Posi-</th> <th>Sample</th> <th>Posi-</th> <th>Sample</th>	no.	Posi-	Sample	Posi-	Sample	Posi-	Sample		
Longissimus dorsi, loin portion VI A 162 B 163 C 164 VII C 188 A 186 B 187 VIII B 211 C 212 A 210 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VII A 189 C 191 B 190 VIII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI A 168 C 170 B 169 VII B 193 A 192 C 194 VIII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VI C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 265 A 264 C 266 Semimembranosus VI D 177 A 174 B 175 VI D 177 A 174 B 175 VI D 177 A 174 B 175 VI B 199 C 201 A 196 VII B 199 D 201 A 196		tion	no.	tion	no.	tion	no.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Longissi	mus dor:	si, loin po	ortion					
VII C 188 A 186 B 187 VIII B 211 C 212 A 210 IX A 234 B 235 C 236 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VII A 189 C 191 B 190 VIII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI A 168 C 170 B 169 VII B 193 A 192 C 194 VIII C 197 B 196 A 195 VII B <	ĬĬ	A	162	B	163	C	164		
VIII B 211 C 212 A 210 IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion Image: C 191 B 190 VII A 189 C 191 B 190 VIII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI A 168 C 170 B 169 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus IX B 219 C 221 B 220 IX B 219	VII	C	188	A	186	В	187		
IX A 234 B 235 C 236 X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VI C 167 B 166 A 165 VI A 189 C 191 B 190 VII A 189 C 191 B 190 VII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI B 193 A 192 C 194 VII B 193 A 192 C 194 VIII C 218 B 217 A 216 IX A 240 C 244 C 266 Semitendinosus VI	VIII	В	211	C	212	A	210		
X C 260 A 258 B 259 Longissimus dorsi, rib portion VI C 167 B 166 A 165 VI A 189 C 191 B 190 VII A 189 C 191 B 190 VII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI B 193 A 192 C 194 VII B 193 A 192 C 194 VIII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus	IX	A	234	В	235	C	236		
Longissimus dorsi, rib portion VI C 167 B 166 A 165 VI A 189 C 191 B 190 VIII A 189 C 191 B 190 VIII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Pscas major and pscas minor VI A 168 C 170 B 169 VII B 193 A 192 C 194 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VII B 177 B 196 A 195 VII </td <td>X</td> <td>C</td> <td>260</td> <td>A</td> <td>258</td> <td>В</td> <td>259</td>	X	C	260	A	258	В	259		
VI C 167 B 166 A 165 VII A 189 C 191 B 190 VIII B 214 A 213 C 215 IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor VI A 168 C 170 B 169 VI A 168 C 170 B 169 VII B 193 A 192 C 194 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VII C 197 B 196 A 195 VII A 219 C 221 B 226 IX B 249 <	Longissi	mus dor	si, rib por	rtion					
VIIA189C191B190VIIIB214A213C215IXC239B238A237XA261C263B262Psoas major and psoas minorC263B262VIIA168C170B169VIIB193A192C194VIIC218B217A216IXA240C242B241XB265A264C266SemitendinosusVIB172A171C173VIIC197B196A195VIIA219C221B220.IXB244A243C245XC269B268A267SemimembranosusVID177A174B175VIID177A174B176VIIB199D201A196VIIB199D201A196	Ϋ́Ι	C	167	В	166	A	165		
VIIIB 214 A 213 C 215 IXC 239 B 238 A 237 XA 261 C 263 B 262 Psoas major and psoas minorC 263 B 262 VIA 168 C 170 B 169 VIIB 193 A 192 C 194 VIIC 218 B 217 A 216 VIIC 218 B 217 A 216 IXA 240 C 242 B 241 XB 265 A 264 C 266 SemitendinosusVIB 172 A 171 C 173 VIIC 197 B 196 A 195 VIIA 219 C 221 B 220 .IXB 244 A 243 C 245 XC 269 B 268 A 267 SemimembranosusVID 177 A 174 B 175 VIID 177 A 174 B 175 VIIB 199 D 201 A 196 VIIB 199 D 201 A 196	VII	A	189	C	191	В	190		
IX C 239 B 238 A 237 X A 261 C 263 B 262 Psoas major and psoas minor C 263 B 262 VI A 168 C 170 B 169 VI A 168 C 170 B 169 VI B 193 A 192 C 194 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VII C 197 B 196 A 195 VIII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 26	VIII	в	214	A	213	C	215		
XA261C263B262Pseas major and pseas minorVIA168C170B169VIIB193A192C194VIIC218B217A216IXA240C242B241XB265A264C266SemitendinosusVIB172A171CVIIC197B196A195VIIIC197B268A267SemitendinosusVID177A174B175VIID177A174B175VID177A174B175VIID177A174B175VIID177A174B175VIID177A174B175VIID177A174B175VIID177A174B175VIID177A174B175VIID177A174B175VIIB199D201A196VIIB199D201A196VIIB199D201A196	IX	C	239	В	238	A	237		
Pscas major and pscas minor VI A 168 C 170 B 169 VII B 193 A 192 C 194 VII B 193 A 192 C 194 VII B 193 A 192 C 194 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VI C 197 B 196 A 195 VII C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D </td <td>X</td> <td>A</td> <td>261</td> <td>C</td> <td>263</td> <td>В</td> <td>262</td>	X	A	261	C	263	В	262		
VI A 168 C 170 B 169 VII B 193 A 192 C 194 VII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VI B 172 A 171 C 173 VII C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VI D 177 A 174 B 176 VII B 199 D	Psoas ma	jor and	psoas min	or					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	A	⁻ 168	C	170	В	169		
VIII C 218 B 217 A 216 IX A 240 C 242 B 241 X B 265 A 264 C 266 Semitendinosus VI B 172 A 171 C 173 VI B 172 A 171 C 173 VI C 197 B 196 A 195 VII C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VI D 177 A 174 B 176 VI D 177 A 174 B 176 VII B 199 D	VII	В	193	A	192	С	194		
IXA240C242B241XB265A264C266SemitendinosusVIB172A171C173VIIC197B196A195VIIIA219C221B220IXB244A243C245XC269B268A267SemimembranosusVID177A174B175VID177A174B175VID177A174B175VID177A174B175VIIB199D201A196VIIB199D201A196	VIII	C	218	В	217	A	216		
XB 265 A 264 C 266 SemitendinosusVIB 172 A 171 C 173 VIIC 197 B 196 A 195 VIIIA 219 C 221 B 220 IXB 244 A 243 C 245 XC 269 B 268 A 267 SemimembranosusVID 177 A 174 B 175 VID 127 A 174 B 175 VID 127 A 174 B 175 VID 127 A 176 C 176 VIIB 199 D 201 A 196 C 200 F 203 F 202	IX	A	240	C	242	В	241		
Semitendinosus VI B 172 A 171 C 173 VII C 197 B 196 A 195 VII C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VI B 199 D 201 A 196 VII B 199 D 203 E 203	X	В	265	A	264	C	266		
VI B 172 A 171 C 173 VII C 197 B 196 A 195 VII C 197 B 196 A 195 VII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VII B 199 D 201 A 196 C 200 E 203 E 202	Semitend	inosus							
VII C 197 B 196 A 195 VIII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VI D 127 A 178 C 176 VII B 199 D 201 A 196 C 200 E 203 E 202	VI	B	172	А	171	C	173		
VIII A 219 C 221 B 220 IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 F 179 E 178 C 176 VII B 199 D 201 A 196 C 200 F 203 F 202	VII	č	197	В	196	A	195		
IX B 244 A 243 C 245 X C 269 B 268 A 267 Semimembranosus VI D 177 A 174 B 175 VI D 127 A 174 B 175 VI D 127 A 174 B 175 VII B 199 D 201 A 196 C 200 E 203 E 202	VTTT	Â	219	Ē	221	В	220		
XC 269 B 268 A 267 SemimembranosusVID 177 A 174 B 175 F 179 E 178 C 176 VIIB 199 D 201 A 196 C 200 E 203 E 202	TX	R	244	A	243	Ğ	245		
Semimembranosus VI D 177 A 174 B 175 F 179 E 178 C 176 VII B 199 D 201 A 198 C 200 F 203 F 202	X	ē	269	В	268	A	267		
VI D 177 A 174 B 175 F 179 E 178 C 176 VII B 199 D 201 A 198 C 200 E 203 E 202	Semimemb	ranosus							
F 179 E 178 C 176 VII B 199 D 201 A 198 C 200 E 203 E 202	VI	D	177	A	174	В	175		
VII B 199 D 201 A 198 C 200 E 203 E 202		F	179	E	178	C	176		
C 200 E 203 E 203	VII	В	199	D	201	and the A	198		
		C	200	F	203	Е	202		
VIII A 222 B 223 D 225	VIII	A	222	В	223	D	225		
E 226 C 224 F 227	* **** **** *** *	E	226	C	224	F	227		
TX D 249 A 246 B 247	TX	ā	249	Ā	246	B	247		
F 251 E 250 C 248		R	251	E	250	Ē	248		
X B 271 D 273 A 270	X	R	271	D	273	Ă	270		
C 272 F 275 E 274		õ	272	F	275	E	274		

Table 1. Design for Injection of Beef Cuts. Position of sample in muscle is indicated in Figures 1, 2, 3, 4, and 5.

(continued)

Animal no.	Soc		La	ctic cid	Sodium chloride and lactic acid		
	Posi- tion	Sample no.		Posi- tion	Sample no.	Posi- tion	Sample no.
En del foto de la constante de			1947 gan († 1947 († 1947 a. 1947 († 1946)	international and the design of the design o	alfrederigen fregimeen Darine, sowie eitigen de te anwerzen J	ar fan de fan	
Biceps	femoris						
VI	E	184		A	180	В	181
	F	185		С	182	D	183
VII	В	205		E	208	Á	204
	D	207		F	209	C	206
VIII	A	228		В	229	Е	232
	C	230		D	231	F	233
IX	E	256		A	252	В	253
	F	257		C C	254	D	255
X	В	277		E	280	A	276
	D	279		Ŀ,	281	C	278

Table 1 (continued)

lengthwise of the grain of the meat. Operation of the lever of the pressure pump as the instrument was slowly withdrawn permitted the solution to enter the meat. The needles were inserted three times in each cut of meat so that the resulting points of injection were about equally spaced. Usually it was necessary to add a little more solution at the top of the beaker to bring the weight to the desired figure. Occasionally it was necessary to pour off a small amount of the liquid to secure the proper weight of sample plus injecting solution. After injection of the sample, the container of meat was covered with moisture-vapor-proof cellophane and stored in the cooler beside the respective control sample.

Aging the Cuts

The control and injected cuts of beef were permitted to remain in the cooler at 34° to 36° F. for a period of 1 week after cutting (8 days after slaughter of the animal).

Canning the Meat

Equipment

The canning equipment was of commercial type and was located in the Food Processing Laboratory. The steamer, can sealer, and processing retort were operated by R. G. Tischer, Research Associate Professor of Horticulture. Plain tin cans, number 2 size, were used as containers for the meat. The lids had a rubber-like sealing compound at the rim.

Preparation of samples

The cuts of meat, after aging 8 days, were taken from the cooler, removed from the beakers, and individually weighed. The "drip" and/or surplus solution were discarded without weighing. From the anterior end of each cut, samples for histological study and for pH determinations were taken as previously described.

Since it was desired to have a minimum of 20 ounces (567 grams) of raw meat to put into each can, the piece was trimmed

to a weight within the range of 568 to 578 grams. In a few instances the "filler" of meat from the same animal was used to make up for the difference in weight. After a record of its weight was made, the cut of meat was put into the can with anterior end of the cut uppermost. A thermometer was inserted in each of four pairs of representative cans so that the bulb of the thermometer was near the center of the cut of meat. The square of cellophane which had been over the top of the beaker during storage was transferred to the top of the can to remain during the preheating of the meat before sealing. From each animal 48 cans of meat were used for processing plus some reserve cans, making a total of 56 for a retort load. This number of cans was sufficient to fill the retort to approximately one-third of its capacity.

Preheating the meat

The cans of meat resting on metal trays were loaded into a three-compartment steamer for preheating. The doors of the steamer were left slightly ajar so that atmospheric pressure would be maintained. A preliminary test had shown that approximately 1 hour of steaming was necessary for the meat at the center of the can to reach a temperature of 170°F. or higher. At the end of an hour of heating the cans were removed from the steamer, the thermometers read, the cellophane covers removed, and the cans closed on the automatic sealing machine.

- 56 -

Processing the meat

The cans of meat were immediately transferred to the processing retort and arranged with metal racks separating the tiers of cans. The retort was closed, the steam turned on, and the automatic device for recording temperature and time within the retort was adjusted. Processing was carried out at 10 pounds pressure (240°F.) for 65 minutes for the meat from animals VI, VII, and VIII; for 90 minutes in the case of Animals IX and X. Within a minute after opening the steam valve, the pressure had reached 10 pounds within the retort.

At the end of the processing period the steam was turned off and the values were adjusted so that running cold water was circulated through the retort to cool the cans. The cooled cans were dried and two of the reserve cans were placed in an incubator at 100° F. for observation of keeping quality at an elevated temperature. All the other cans remained at room temperature overnight and then were transferred to the cooler for storage at 34° to 36° F. until they were opened for evaluation of the meat. The cans were stored in the cooler because it was the only convenient storage space available.

Evaluation of the Canned Meat

Preparation for evaluation

During an 8-day evaluation period, six cans of meat were

- 57 -

opened daily. The six cans opened on any particular day were from the same pair of muscles and represented the three kinds of injection. The order in which the meat from the various muscles was tested was determined by drawing lots. The design for the order of evaluation of canned beef samples is shown in Table 2. Each day the six cans to be opened on the following day were removed from storage in the cooler and were allowed to come to room temperature.

Table 2. Design for the Evaluation of Canned Beef Samples

Animal	Contro	ol and	inject	ted sam	nples	evaluat	ted ead	ch day
no.	lst	2d	3d	4th	5th	6th	7th	8th
VT	168	180	165	174	162	171	181	175
¥	169	183	166	176	163	172	182	177
	170	185	167	179	164	173	184	178
VII	192	189	186	200	198	195	204	206
	193	190	187	202	199	196	205	207
	194	191	188	203	201	197	208	209
VIII	213	228	216	210	219	224	230	222
	214	229	217	211	220	22 6	231	223
	215	232	218	212	221	227	233	225
IX	243	234	253	240	237	246	252	247
	244	235	254	241	238	248	255	249
	245	236	25 6	242	239	251	257	250
x	278	261	272	270	267	258	276	264
	279	262	274	271	268	259	277	2 6 5
	281	263	275	273	269	260	280	266

- 58 -

Before a can was opened, a measurement was taken of the vacuum developed within the can by inserting a vacuum gauge through the lid. Following this measurement the can was opened and the liquid was drained into a bowl for weighing. A portion of the liquid (approximately 35 milliliters) was poured into a screw-topped glass jar and put into the refrigerator for storage at 4° C. until the following day when it was observed for the amount of gelation which had occurred. The remainder of the liquid was poured into a 400-milliliter beaker for observation of the color and general appearance, and for sampling by the judges when scoring flavor of the liquid. The meat from the can was weighed in the same bowl that had been used for the juice, samples for histological study and for pH determination were removed from the piece of meat, and the meat was ready for slicing.

Slicing the meat

A hand-operated mechanical slicer with rotary blade was used to slice the meat from each can. Slices were cut 3/8 inch in thickness. Slicing was begun at the anterior end of the cut of meat, the end uppermost in the can. Individual squares of waxed paper were placed on the platform of the slicer to receive each slice as it came from the blade. The papers were numbered to show the sequence of the slices. Even when the meat was so crumbly as to not give a true slice,

- 59 -

whatever amount of meat came through the machine with one revolution of the blade was placed upon the respective paper and was later counted in determining the "possible number of slices." The slicings from each can of meat were arranged consecutively on a tray for counting the number of slices obtained and for observation of the quality of the slices.

In determining the count of slices, the meat was considered to be a slice if it held together for approximately three-fourths or more of its area. Doubtful cases of "holding together" were tested by picking up the slice with a wire clamp and suspending the slice vertically for about 5 seconds. Distinction was made between slices as to quality, i.e., if they held together for almost the entire area they were classed as firm slices; if they crumbled for about one-fourth of their area they were classed as crumbly slices. Crumbliness more extensive than this meant that the meat was not counted as a "slice obtained" but was considered to be part of the "unsliceable portion." Weight of the total unsliceable portion was recorded for each can and the count of these very crumbly slices was considered in determining the "possible number of slices" from the can. While the slicings from each can of meat were still spread out on the trays, observations were made of the color, iridescence, and general appearance of the meat.

- 60 -

Scoring the meat

Slices obtained from certain relative positions in the out of meat were presented to each of the three judges for scoring. Judge number 1 received the second slice (counting from the anterior end of the cut), judge number 2 the third slice, and judge number 3 the fourth slice (indicated as g, h, and i, respectively, in Figures 1, 2, 3, 4, and 5). Each slice was individually wrapped in waxed paper, marked with a code number, and placed in an individual plastic bag. One such slice from each of the six cuts of meat to be judged that day was presented to each judge for scoring and each judge poured some of the liquid from the beakers into a cup for tasting. Both the meat and the liquid were at room temperature when scored. Sliceability and the desirability of the following six palatability factors were scored by the judges: aroma, flavor or meat, flavor of liquid, tenderness, juiciness, and texture. The scoring range for each factor was a score of 10 for extremely good quality to a score of 1 for extremely poor quality. A copy of the score sheet is given in the Appendix.

Gelation of liquid

Observations were made of the amount of gelation that had occurred in the liquid during refrigeration for approximately 24 hours. The jars were taken from the refrigerator, the screw

- 61 -

cap was removed and the contents of the jar were turned onto a plate. If gelation had taken place, a thin-bladed knife was run once around the interior of the jar to loosen the jellied material from the glass. The rigidity of the gel as it rested on the plate and as a knife was cut through it was observed. If the material was still liquid, the consistency was observed.

Measurement of pH

At three different stages there were samples removed for pH determinations, namely, (1) from three positions in the muscle 1 day after slaughter of the animal and before the muscle was divided into cuts, (2) from the anterior end of the beef cuts on the 8th day after slaughter, and (3) from the posterior end of the piece of canned meat before the slicing was done. The positions within the muscle from which these samples and also those for histological study were taken are shown in the diagrams of the respective muscles (Figures 1, 2, 3, 4, and 5). Each 10-gram sample for pH determination was wrapped in moisture-vapor-proof cellophane and the samples for 1 day were placed in a bag. Samples were stored temporarily (about 2 hours) in the refrigerator at 4°C., transferred to the quick-freezing compartment at the Meats Laboratory for freezing at -30°F., and finally stored at 0°F. until the 13th or 14th day, at which time the samples were removed for measurement of the pH value.

- 62 -

A Coleman pH meter was the instrument used for this determination. The samples were prepared for testing by removing from zero storage, placing a few at a time at room temperature (leaving the remainder in the refrigerator), cutting four or five times through the lO-gram sample with a sharp knife, and exposing the cut pieces to the air for a few minutes until the meat was partially thawed. The pieces were placed in the stainless steel cup of a Waring blendor. Distilled water was added (25 milliliters for the raw meat, 30 milliliters for the canned) and the blendor was run for 50 seconds. This procedure resulted in maceration of the sample and elevation of the temperature to approximately 25°C. Some of the mash was placed in the cup of the pH meter and the reading for the sample was taken.

Histological study

Samples from the longissimus dorsi muscle, rib portion, were selected for histological study. The judges' ratings of palatability factors had shown greater differences between control and injected samples for this muscle than for the other muscles. Histological sections were cut either 25 or 30 microns thick on the freezing microtome. Weigert's stain for elastic connective tissue and Van Gieson's stain for collagen were used to selectively stain these compounds. The muscle fibers appeared yellow-green to reddish orange, the

- 63 -

elastic tissue blue-black, and the collagen bright pink with this staining technique. The nuclei were not differentiated; fat deposits were not stained but could be detected by the shape of the colorless areas within the connective tissue.
RESULTS AND DISCUSSION

The purpose of the investigation, as stated earlier in this paper, was to study the effects on certain physical and organoleptic properties of canned beef of injecting the raw meat with solutions of sodium chloride, of lactic acid, or of sodium chloride and lactic acid. For each experimental cut of beef injected with appropriate solution, there was an uninjected control sample from the corresponding position on the opposite side of the animal. Comparisons are made between the results for the matching pairs of samples.

Detailed tables of data are given in the Appendix as follows: Table 1, Palatability of Canned Beef; Tables 2 and 3, Slicing Quality of Canned Beef; Tables 4 and 5, pH of Beef; Table 6, Weight Changes before Canning; Table 7, Weight of Canned Meat and of Liquid; Tables 8 to 22, inclusive, analyses of variance of canned beef scores for flavor, tenderness, juiciness, texture, and slicing quality. Summary tables and graphs of the results are included under the heading, Results and Discussion.

- 65 -

Palatability of Canned Beef

The palatability of the canned beef was determined by judges' scores for six characteristics of the meat: aroma, flavor of meat and of liquid, tenderness, juiciness, and texture. The judges were experienced in evaluating meat without the addition of table salt during or after cooking. The three judges were consistent in their ratings of palatability of the meat. This was shown by statistical analysis by individual judges of some of the scores given to samples of the canned beef. The uniformity of scoring was sufficiently high that for the remainder of the statistical part of the study, the results were analyzed on the basis of total scores, rather than by scores of individual judges.

The results for four of the palatability factors (flavor, tenderness, juiciness, and texture) and for the judges' rating of slicing quality were selected for statistical analysis. Other results are considered from the standpoint of trends shown, but not on the basis of statistical significance. For purposes of treating the results statistically, Animals VI, VII, and VIII, the meat of which was processed for 65 minutes, were grouped together; Animals IX and X, although of different carcass grade but with the same processing time of 90 minutes, were placed in a second group.

- 66 -

Aroma

The averages of the aroma scores for the canned beef from Animals VI, VII, and VIII were nearly identical for control and injected samples for the three kinds of injection. These average values for aroma, as shown in Table 3, lie within the narrow range of 7.7 to 8.1. For the meat of Animal IX, which was processed for 90 minutes, the average scores for aroma were slightly lower than for the meat for the three animals processed 65 minutes. These data were not analyzed statistically and the differences may be too small to be significant. The meat of Animal X was judged to be less desirable in aroma than that of the other four animals. The average values for control and injected samples for the three kinds of treatment, as shown in Table 3, were within the range of 6.1 to 6.6. Animal X was the aged dairy cow (carcass grade Cutter) and the meat, even before canning, was noted to have a stronger odor than that of the other animals. The injected samples for Animal X had slightly higher average scores for aroma than the control for each of the three treatments, but the differences are probably too small to be significant.

Thus, on the basis of judges' scores, it is evident that injection of the meat had little or no effect on the aroma of the canned meat. The samples processed 90 minutes had

- 67 -

Am 1	No. of muscles	Palatability scores						
Anima1*		Aroma	Flavor		Tender-	Juici-	Tex-	
110.			Meat	Liquid	ness	ness	ture	
Second and a sublicit of the sublicity of the sublicity of the sublicity of the sublicity of the sub-	4					ante anticipatione destablis e redrigen an	de um mini și nietro de cherci nierale	
	н 1910 1910 1910	S ODI UM	CHLORI	DE INJEC	TION	•		
Control	samples						2	
VI	6	7.9	7.3	6.4	7.1	5.7	5.7	
VII	6	8.0	7.5	6.6	7.4	6.4	6.3	
VIII	6	7.7	7.6	6.1	7.2	5.9	5.8	
Av. (3 a	nimals)	7.9	7.5	6.4	7.2	6.0	5.9	
ТХ	6	7.5	7.2	5.7	7.8	4.5	5.7	
X	6	6.2	4.9	4.2	7.3	4.4	4.7	
Av. (2 a	nimals)	6.8	6.0	5.0	7.6	4.4	5.2	
Av. (5 a	nima ls)	7.5	6.9	5.8	7.4	5.4	5.6	
Injected	samples							
VI	6	7.8	8.0	7.2	8.1	6.7	7.1	
VII	6	7.8	8.2	7.5	8.6	6.6	7.2	
VIII	6	7.9	8.1	7.2	8.0	6.6	6.9	
Av. (3 a	nimals)	7.8	8.1	7.3	8.2	6.6	7.1	
IX	6	7.4	7.9	7.1	8.7	4.8	6.8	
X	6	6.6	5.7	5.2	8.7	5.4	6.1	
Av. (2 a	nimals)	7.0	6.8	6.2	8.7	5.1	6.4	
Av. (5 a	nimals)	7.5	7.6	6.8	8.4	6.0	6.8	

Table 3. Averages of Palatability Scores.

(continued)

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

Animal no.	No. of muscles	Palatability scores						
		Aroma	Flavor		Tender-	Juici-	Tex-	
			Meat	Liquid	ness	ness	ture	
terefolo in Alexandro a Alexandro		an de aleman de la compañía de la co					in an an the second	
	SODIUM	CHLORIDE	AND L	ACTIC AC	ID INJECT	ION		
Control	samples		· · ·					
VI	6	7.9	7.5	6.5	7.7	6.3	6.2	
VII	6	8.0	7.6	6.8	7.6	6.3	6.3	
VIII	6×	7.7	7.6	6.2	7.0	6.2	6.0	
Av. (3	animals)	7.9	7.6	6.5	7.4	6.3	6.2	
тх	6	7.4	7.2	5.6	7.6	4.5	5.7	
X	6	6.2	5.2	4.0	7.4	4.4	4.8	
Av. (2	animals)	6.8	6.2	4.8	7.5	4.4	5.2	
Av. (5	animals)	7.4	7.0	5.8	7.5	5.5	5.8	
				а.				
Injecte	d samples				н. 			
VI	6	8.0	8.0	7.4	8.4	6.9	7.6	
VII	6	7.9	8.2	7.8	8.6	6.8	7.1	
VIII	6	8.0	8.2	7.5	8.3	6.7	7.4	
Av. (3	animals)	8.0	8.1	7.6	8.4	6.8	7.4	
IX	6	7.5	8.0	7.2	8.9	5.1	7.0	
X	6	6.4	5.8	5.3	8.9	4.9	6.2	
Av. (2	animals)	7.0	6.9	6.2	8.9	5+0	6.6	
Av. (5	animals)	7.6	7.6	7.0	8.6	6.1	7.1	

(continued)

Table 3 (continued)

Animal no.	No. of muscles	Palatability scores						
		Aroma	Flavor		Tender-	Juici-	Tex-	
			Meat	Liquid	ness	ness	ture	
	· · · · · · · · · · · · · · · · · · ·		8 		· · · ·	-		
	n i i i i i i i i i i i i i i i i i i i	LACTIC	ACID	INJECTI	ON			
Control	samples							
VI	6	8.1	7.4	6.4	7.6	6.3	6.6	
VII	6	7.8	7.6	6.9	7.6	6.2	6.0	
VIII	6	7.7	7.5	6.1	6.7	5.6	5.6	
Av. (3	animals)	7.9	7.5	6.5	7.3	6.0	6.1	
IX	6	7.5	7.3	5.5	7.8	4.8	5.9	
X	6	6.1	5.0	3.9	7.2	4.2	4.5	
Av. (2 a	animals)	6.8	6.2	4.7	7.5	4.5	5.2	
Av. (5 a	animals)	7.4	7.0	5.8	7.4	5.4	5.7	
Injected	d samples							
VI	6	8.0	7.7	6.6	7.7	6.5	6.8	
VII	6	7.9	7.4	6.7	7.4	6.1	6.2	
VIII	6	7.8	7.6	6.1	6.5	5.7	5.4	
Av. (3	animals)	7.9	7.6	6.5	7.2	6.1	6.1	
IX	6	7.4	7.2	5.6	7.6	4.5	5.7	
X	6	6.4	5.2	4.5	7.7	4.8	5.2	
Av. (2 a	animals)	6.9	6.2	5.0	7.6	4.6	5.4	
Av. (5	animals)	7.5	7.0	5.9	7.4	5.5	5.9	

slightly lower average scores for aroma of the canned beef than those processed 65 minutes. The scores for meat from the aged dairy cow were markedly lower than for the other animals, and only a slight improvement in aroma was noted as a result of injection with any of the three solutions.

Flavor

An improvement in the flavor of the meat injected with either sodium chloride solution or with sodium chloride and lactic acid solution, in comparison with the control samples, is shown by the data in Table 3 and Figures 6 and 7. An analysis of variance of the results shows that the differences were highly significant.

The flavor differences between muscles were not significant for either group of animals, nor between animals of the first group. Within the second group, composed of Animals IX and X, the flavor differences between the meat of the two animals were highly significant. The meat of Animal X, the aged dairy cow, was strong in flavor. The average scores for this factor, as shown in Table 3, are 5.7 and 4.9, respectively, for sodium chloride-injected and the control samples, whereas, for Animal IX the values are 7.9 and 7.2, respectively. Similarly, for samples treated with combined sodium chloride and lactic acid, Animal X had values of 5.8 and 5.2, respectively, for injected and control samples, compared to

- 71 -

Control samples ----

Figure 6. Scores for Flavor of Canned Beef. Sodium chloride injection.

Control samples ----

Injected samples

Figure 7. Scores for Flavor of Canned Beef. Sodium chloride and lactic acid injection.

- 73 -

8.0 and 7.2 for Animal IX.

Lactic acid injection made no significant difference in the flavor of control and injected samples of beef for either group one or group two (Figure 8). The flavor differences between Animal IX and Animal X were highly significant, as was true in the results for the other two kinds of injection.

Thus, injection of the raw meat with either sodium chloride or with sodium chloride-lactic acid solution was shown to have a favorable effect on the flavor of the canned meat, the differences between injected and control samples being highly significant. Injection with lactic acid, on the other hand, made no significant difference in the judges' rating of the flavor of the canned meat.

Flavor of the liquid

The results for the flavor of the liquid show the same general pattern as those for the flavor of the meat, but the level of scores is markedly lower for the liquid than for the meat, as shown by the average values in Table 3. Comments of the judges as to flavor of the liquid included such descriptive terms as "metallic" and "bitter." For the older animal, the liquid was said to have a "very strong flavor." For the samples treated with either solution containing sodium chloride, the judges repeatedly commented that the juice was

- 74 -

Injected samples

Figure 8. Scores for Flavor of Canned Beef. Lactic acid injection. "salty" or "a little too salty," whereas the meat was not similarly designated. Even though the flavor of the liquid was often indicated as salty, the average scores for flavor of the liquid (Table 3 and Figures 9 and 10) were higher for injected than for control samples for either of the solutions containing salt. The lactic acid treatment had no consistent effect on the flavor of the liquid, as shown in Table 3 and Figure 11.

Tenderness

The tenderizing effect of both sodium chloride and sodium chloride-lactic acid treatment is shown by judges' scores for tenderness of the canned beef (Table 3). The analysis of variance indicates that the differences between injected and control samples were highly significant. Lactic acid injection had no significant tenderizing effect on the meat.

For samples from Animals VI, VII, and VIII with sodium chloride injection, there was no significant difference in tenderness among animals, but there was a difference, significant at the .05 level, among the muscles. The psoas muscles received high scores for tenderness; the longissimus dorsi, loin portion, was rated lower, in general, than the other muscles of these three animals. The average tenderness scores for control samples of Animals IX and X (Table 3 and Figure 12) were lower for the aged dairy cow than for the

- 76 -

Control samples ____

Injected samples _____

Figure 9. Scores for Flavor of Liquid from Canned Beef. Sodium chloride injection.

Control samples _ _ _ _

Injected samples ____

Figure 10. Scores for Flavor of Liquid from Canned Beef. Sodium chloride and lactic acid injection.

Control samples ----

Injected samples _____

Control samples ____

Injected samples ____

Figure 12. Scores for Tenderness of Canned Beef. Sodium chloride injection. beef steer. The meat from both animals was made more tender by injection with sodium chloride solution and the differences owing to treatment were highly significant. The tenderizing effect was more marked for the meat from the older animal than for the meat from the younger animal.

Results for sodium chloride and lactic acid in combination were similar to those for sodium chloride alone; i.e., the injected cuts for both groups of animals received higher average tenderness ratings than the control samples (Table 3 and Figure 13. These differences were highly significant. The differences in tenderness of muscles for the first group of animals were significant at the .05 level; for the second group, at the .01 level. The psoas muscles ranked highest, and the loin portion of the longissimus dorsi muscle lowest, in the average tenderness scores among the five animals. The meat of the aged dairy cow would be expected to be less tender than the meat of the steer, but for the samples included in the sodium chloride-lactic acid treatment, no significant differences in tenderness between animals were shown. This may be explained on the basis of the long processing period (90 minutes) for Animals IX and X during which time the connective tissue may have become softened in the meat of both animals. A second factor would be the small number of animals in the group. The differences would have to be large

- 81 -

Control samples _ _ _ _

Injected samples _____

Figure 13. Scores for Tenderness of Canned Beef. Sodium chloride and lactic acid injection. to be classed as significant with only two animals in the group.

Although the lactic acid injection of beef did not have a significant effect on the tenderness of the meat (Figure 14), the data showed there were differences in tenderness among muscles that were significant at the .01 level for Animals VI, VII, and VIII, but only at the .05 level for Animals IX and X. Differences among animals were highly significant for the first group of animals, but not significant for the second group. The same factors, i.e., the long processing period and the small number of degrees of freedom in the statistical analysis of the results, may explain the fact that the differences in tenderness between Animals IX and X were too small to be significant.

In general, it may be said that the tenderness of meat, as revealed by judges' scores, indicated differences among muscles and to some extent among animals. Injection of the raw meat with sodium chloride solution or with combined sodium chloride and lactic acid solution resulted in improved tenderness of the canned beef.

Juiciness

Judges' scores for juiciness of the canned beef showed no significant differences due to animal variation for either

Figure 14. Scores for Tenderness of Canned Beef. Lactic acid injection.

- 84 -

group. The muscle variation for Animals VI, VII, and VIII was not significant for samples included in the tests with sodium chloride but was highly significant for the samples used with the other two kinds of treatment. Muscle differences were not significant for Animals IX and X.

In general, the judges' rating of juiciness of the canned beef tended to be medium or fairly low. Average scores ranging from 6.9 to 5.6 for animals processed 65 minutes and from 5.4 to 4.2 for animals processed 90 minutes are shown in Table 3. These results are shown graphically in Figures 15, 16, and 17.

Injection of the raw meat with sodium chloride solution improved the juiciness of the samples processed for 65 minutes, but had no significant effect on those processed 90 minutes.

The improvement in juiciness brought about by injection of the meat with the combination of sodium chloride and lactic acid solution was significant at the .05 level for both groups of animals. In the meat processed 65 minutes, there was inconsistency of results for the different muscles. The injected samples of biceps femoris and loin portion of longissimus dorsi were similar to or less juicy than the control samples in contrast to improved or similar juiciness for injected samples of other muscles (Figure 16).

- 85 -

Control samples ---- Injected samples -----

Figure 15. Scores for Juiciness of Canned Beef. Sodium chloride injection.

- 86 -

Control samples _ _ _ _

injected samples ...

Figure 16. Scores for Juiciness of Ganned Beef. Sodium chloride and lactic acid injection.

Control samples ___

Injected samples ____

Figure 17. Scores for Juiciness of Canned Beef. Lactic acid injection. The muscle differences of the samples of meat included in the experiments with lactic acid injection were not significant for the animals of group two, but for group one there was a highly significant difference among muscles. Meat from the loin portion of the longissimus dorsi and from the semimembranosus ranked lower in juiciness than the other muscles (Figure 17).

Improvement in juiciness of canned meat by injection with sodium chloride solution or with a combination of sodium chloride and lactic acid solution was less marked than the improvement in tenderness. Lactic acid injection had little effect on either tenderness or juiciness of the canned meat.

Texture

Texture scores showed considerable variation. The differences among muscles were shown to be significant at the .05 level for the meat from Animals IX and X and also for the samples included in the sodium chloride treatment from Animals VI, VII, and VIII. The texture differences among muscles were highly significant for the samples included in the other two injection treatments of the latter group. In general the psoas muscles were considered by the judges to have the most desirable texture; the longissimus dorsi loin and the semimembranosus, the least desirable texture of the muscles studied (Figures 18, 19, and 20). A highly

- 89 -

an

Control samples _ _ _ Injected samples _

Figure 18. Scores for Texture of Canned Beef. Sodium chloride injection.

Control samples ---- Injected samples -

Figure 19. Scores for Texture of Canned Beef. Sodium chloride and lactic acid injection.

Control samples _ _ _ _

Injected samples ____

Figure 20. Scores for Texture of Canned Beef. Lactic acid injection. significant improvement in the texture of the meat was shown by injection with sodium chloride solution or with sodium chloride and lactic acid solution. Average scores (Table 3) for texture of the meat from the five animals were 6.8 and 5.6, respectively, for injected and control samples with sodium chloride treatment; for the combined sodium chloride and lactic acid treatment, 7.1 and 5.8, respectively.

Lactic acid treatment had no significant effect on the texture scores of the canned beef. The average texture scores for the five animals were, respectively, 5.9 and 5.7 for the injected and uninjected meat (Table 3).

Thus, a marked improvement in texture was found in the canned meat as a result of injection of the raw beef with either sodium chloride solution or with the solution in which sodium chloride was combined with lactic acid. No significant change in texture was brought about by injection of the meat with lactic acid solution alone.

The uniformity of penetration of any of the solutions injected into the beef cuts was not determined. An effort was made to insert the needles so the distances between openings would be approximately equal. The pressure pump was operated as evenly as possible, but there was no automatic control to insure the uniform delivery of a specific amount of solution within a given area of the meat. Unequal distribution of the solution within the meat may account for some of the variations observed in the results.

Histological Appearance of Beef Fibers

The rib portion of the longissimus dorsi muscle was used for histological study. Longitudinal microscopic sections were made of the fresh muscle aged 1 day, of the beef cuts aged 8 days, and of the canned beef. The effects of the three kinds of injection on the microscopic structure of the muscle fibers and the connective tissue were noted. Photomicrographs were taken of certain representative sections. Most of the pictures were of samples from Animal X. Sections were used which show the appearance of the meat from that muscle at the different aging periods, with different kinds of injection, and after canning. A few pictures of sections from other animals were included for comparison.

Sections for microscopic examination were small and represent only a limited area of the muscle. And, as has been previously mentioned, the injected solutions may not have been distributed uniformly throughout the muscle. An effort was made to obtain areas typical of the major portion of the section.

The samples of beef which had received certain of the treatments were especially difficult to section for mounting

- 94 -

on slides. Sodium chloride-treated samples were very troublesome. The uncooked samples were much more difficult to handle in sectioning and in mounting than the cooked ones. Hence, the appearance of the samples from the five animals was taken into consideration for the following descriptions. Disintegration appeared more slowly in the fibers of Animal VIII than in the muscle fibers of the other animals. This is reflected in the low tenderness scores of the canned beef from Animal VIII, particularly for control samples.

Harrison (18) has described the appearance of longitudinal sections of beef from various muscles after aging from one to 30 days. Each muscle had certain characteristics and the muscle fibers changed with aging. Very wavy, kinked fibers were characteristic of fresh muscle tissue, although waves did not always form in the fresh samples. Another characteristic of lack of aging was the longitudinal striations. The longitudinal striations predominated in the wavy fibers and often in the straight fibers of freshly cut beef. Harrison observed no longitudinal striae in the psoas muscle at any aging period. She did observe very heavy longitudinal striations in the longissimus dorsi muscle fibers. Sometimes both longitudinal and cross striae were distinct in some areas of a fiber, giving a checked appearance.

As the muscle aged the contractions were not so great

- 95 -

and the fibers were less wavy. The longitudinal striae gradually became less distinct in most areas of the fibers, the cross ones more distinct, although the longitudinal ones sometimes remained in the waved fibers. With further aging Harrison (18) and Paul (23) both observed disintegration or disappearance of the striations. This first occurred in narrow areas or cracks at wide intervals. With longer aging these disintegrated areas increased in size and numbers. The appearance of disintegration of the striae and its increase with aging were correlated with the increasing tenderness in a majority of the muscles.

The rate at which disintegration appeared varied in different muscles and was more rapid in the same muscle in some animals than in others.

Fresh muscle

The appearance of the muscle fibers of the rib portion of the longissimus dorsi muscle after 1 day of aging is shown in Figure 21. The wavy fibers and the contracture nodes are characteristic of fresh muscle. Longitudinal striae are visible in parts of the fibers, but the magnification for the photomicrograph was not great enough to show them clearly.

Figure 21. Fresh, Longissimus Dorsi, Rib Portion, Middle Position. Aged One Day. Animal X. (Magnification 150x) This section is typical of fresh muscle. The fibers are wavy and contracture nodes are present.

Sodium chloride injection

Since the control samples aged 8 days had not been injected, they represent raw beef cuts which had aged a longer time than the samples from the fresh muscle. The upper picture in Figure 22 is a photomicrograph of a control sample from the sodium chloride-treated series of cuts. This section has the typical appearance of uncooked meat in which some resolution of rigor has taken place. The fibers are nearly straight, shallow waves are present, and the accordionpleated effect of the fresh muscle has disappeared. The longitudinal striae are still distinct, particularly in waved portions of the fibers, and the sarcolemma is smooth except where a few cracks in the fibers have occurred.

The typical appearance of the raw beef injected with sodium chloride and aged 8 days is illustrated in the lower picture of Figure 22. The section was cut partially transverse of the fibers. In addition the connective tissue did not hold the muscle fibers together in the sodium chloridetreated meat. The segments of the fibers, however, show many cracks and broken places and much disintegration. The cross striae predominated over the longitudinal ones. These are characteristics which would be expected to contribute to tenderization in meat. It is interesting that for this particular sample of canned beef (number 261) the judges' score

- 98 -

Figure 22. Sodium Chloride Injection. Longissimus Dorsi, Rib Portion. Animal X. Upper: Aged, Control Sample No. 261. (Magnification 85x) Lower: Aged, Injected Sample No. 261. (Magnification 150x)

for tenderness of the control sample was 7.0 and of the injected sample, 9.3 (Table 1, Appendix), indicating that the injected sample was rated more tender than the control.

A cut of meat from another animal (Animal IX) receiving the sodium chloride injection and aged for 8 days is illustrated in the upper picture of Figure 23. The fibers are fairly straight, and the disintegration fissures are not as numerous as in Animal X, but the parallel course of the fibers has been maintained better than in Animal X. It appears that the tenderizing effect of sodium chloride was not as extensive in this cut of meat as in that of Animal X. The tenderness score received by this cut of meat after canning (Table 1, Appendix) is higher than for its control (8.7 for the injected; 8.3 for the control), but not as high as the score of 9.3 for the sodium chloride-injected cut of the same muscle in Animal X.

The histological appearance of uninjected canned beef is shown in Figure 23, lower picture. The section is from the sodium chloride-treated series of Animal X, but was a control sample. The fibers have a dense, compact appearance and follow a fairly straight course. The whole section has a rather foggy appearance. An examination under high power shows the edges of the fibers to be uneven. There is much granular material, probably disintegration products of

- 100 -

Upper:	Aged, Injected Sample No. 239.	
	Animal IX. (Magnification 150x)	
Lower:	Canned, Control Sample No. 261.	
	Animal X. (Magnification 115x)	

collagen since this granular material was found only in the canned beef sections, near the edges of the fibers and between adjacent ones, or within extensive areas of whole fibers.

Microscopic sections of the canned beef injected with sodium chloride solution have the same dense, compact appearance as the canned control samples. The fibers are generally straight and parallel, but have numerous disintegrated areas. Granular material is located within disintegrated areas of the fibers as well as along the edges of fibers and between adjacent ones. Little connective tissue is visible between the fibers.

Harrison (18) noted the opaque appearance of the sections from cooked beef roasts, and Paul (23) reported a decrease in the diameter of the muscle fibers with cooking, as observed from microscopic sections of raw and cooked roasts.

Sodium chloride and lactic acid injection

A control sample is shown in Figure 24, upper picture. The beef had been aged 8 days and was a cut from the same muscle of Animal X as the control sample of the sodium chloride series.

The fibers in the section are typical of those found in

Figure 24. Sodium Chloride and Lactic Acid Injection. Longissimus Dorsi, Rib Portion. Animal X. Upper: Aged, Control Sample No. 263. (Magnification 150x) Lower: Aged, Injected Sample No. 263. (Magnification 150x) other cuts aged 8 days. There are some waved fibers, but not so many as in the fresh sections. Shallow waves with fairly distinct longitudinal striations, some nodes, and a few disintegration cracks in the fibers can be seen. The cross strike predominate in the straight fibers.

A section of the matching injected sample aged 8 days is shown in Figure 24, lower picture. The disintegration of the fibers is more pronounced than in the control sample.

The histological sections of the control and injected samples of canned meat from the rib portion of the longissimus dorsi muscle are pictured in Figure 25. The disintegration cracks are more numerous and the areas more extensive in the injected than in the control sample. This is in keeping with the higher tenderness scores given by the judges to the sodium chloride-lactic acid-injected meat than to control samples.

Examples of canned beef injected with combined sodium chloride and lactic acid from two other animals are shown in Figure 26. The upper picture represents meat from the longissimus dorsi, rib portion, of Animal VII, which was processed 65 minutes; the lower picture, meat of Animal IX, which was processed 90 minutes. Both sections show straight fibers that are dense and compact and that have considerable disintegration. Granular material is present within and between the fibers. The meat processed the longer time has a

Figure 25. Sodium Chloride and Lactic Acid Injection. Longissimus Dorsi, Rib Portion. Animal X. Upper: Canned, Control Sample No. 263. (Magnification 150x) Lower: Canned, Injected Sample No. 263. (Magnification 150x)

Figure 26.	Sodium Chloride	and Lactic Acid Injection.
-	Longissimus Dors:	1, Rib Portion.
Upper:	Canned, Injected	Sample No. 191.
	Animal VII.	(Magnification 115x)
Lower:	Canned, Injected	Sample No. 238.
	Animal IX.	(Magnification 165x)

larger amount of disintegration (probably animal variation) in the fibers and looks more fragile than the meat processed the shorter time.

Lactic acid injection

The aged samples of the series treated with lactic acid were found to have histological features very nearly like those of the control samples. The disintegration is a little more pronounced and the fibers slightly less wavy in the cuts receiving the lactic acid injection than in the controls. (See Figure 27.)

The canned samples of the lactic acid series are illustrated in Figure 28. The areas of disintegration are a little more extensive in the injected than in the uninjected cut of beef but, otherwise, the two cuts are similar in microscopic structure. This agrees with the uniformity of the scores given by the judges to the palatability factors of control and lactic acid-treated samples of canned beef.

Figure 27. Lactic Acid Injection. Longissimus Dorsi, Rib Portion. Animal X. Upper: Aged, Control Sample No. 262. (Magnification 150x) Lower: Aged, Injected Sample No. 262. (Magnification 150x)

Figure 28. Lactic Acid Injection. Longissimus Dorsi, Rib Portion. Animal X. Upper: Canned, Control Sample No. 262. (Magnification 150x) Lower: Canned, Injected Sample No. 262. (Magnification 150x)

Slicing Quality of Canned Beef

The slicing quality of the canned beef was evaluated in three ways: (1) by count of the number of slices obtained from each can, (2) by weight, and (3) by judges' scores. Slices were classified as firm or crumbly. If practically the whole section held together after cutting on the machine it was called a firm slice. If between three-fourths and the whole slice held together it was classified as crumbly. If less than three-fourths of the slice held together it was grouped with the unsliceable portion. Slices were rated by the scoring panel on the proportion of the slice holding together. The scores were based on a value of 10 for extremely good slicing quality and 1 for poor quality.

The averages of the numbers of slices obtained for firm, crumbly, and total slices are shown in Table 4. Variability in the sliceability of the canned beef occurred among muscles and among animals. Furthermore, cuts from the same muscle sometimes gave variable results.

None of the three types of injection improved the slicing quality appreciably. The average figures (Table 4) for the firm slices from samples of all animals in the sodium chloride series were 39.8 and 39.3 per cent for the control and injected cuts, respectively. The results are presented

- 110 -

Animal	No. of muscles	No. s. obta:	lices Ined	Possible no.		Slices obtained	
110+	MUBCICB	Firm C	rumbly	slices	Firm	Crumbly	Total
	nieto meto esti ternitor nega nega Merendinisto en	ter finnen som		e in Algentine and March galance Brange Robins Color Andrean.	%	%	Þ
		SODI	JM CHLC	RIDE INJEC	TI ON		
Contro:	l samples			en an eine Seine Stationer von Seine Stationer von			
IV IIV IIIV	6 6 6	5.0 3.9 4.8	3.9 3.4 3.7	10.5 11.2 11.2	48.1 34.0 44.1	37.1 31.4 32.2	85.2 65.4 76.3
Av. (3	animals)	4.6	3.7	11.0	42.1	33.6	75.6
IX X	6 6	3.3 4.7	3.1 4.5	11.1 11.4	32.7 40.1	26.8 39.6	59.5 79.8
Av. (2	animals)	4.0	3.8	11.2	36.4	33.2	69 .6
Av. (5	animals)	4.3	3.7	11.1	39.8	33.4	73.2
Injecte	ed samples						
IV IIV IIIV	6 6 6	6.0 4.0 2.8	2.8 3.3 3.6	10.4 11.3 11.1	58.2 34.4 27.4	26.0 29.4 32.7	84.2 63.9 60.1
Av. (3	animals)	4.3	3.2	10.9	40.0	29.4	69.4
IX X	6 6	2.3 6.3	1.6 3.4	10.6 11.6	24.0 52.6	14.8 31.1	38.8 83.7
Av. (2	animals)	4.3	2.5	11.1	38.3	23.0	61.2
Av. (5	animals)	4.3	2.9	11.0	39.3	26.8	66.1

Table 4. Averages of Numbers of Slices Obtained.

Table 4 (continued)

Animal	No. of muscles	No. slices obtained		Possible no.		Slices obtained	
120 •	muboros	Firm	Crumbly	slices	Firm	Crumbly	Total
. ganan gala berga yang dagan gala yang da				o <u>in in an</u> an	%	%	%
	SODIUM	CHL	ORIDE AND	LACTIC AC	D INJ	ECTION	
Control	samples						
VI	6	3.7	4.7	10.6	33.2	44.9	78.1
VII	6	5.1	3.4	11.3	45.2	29.7	74.9
VIII	6	3.2	4.9	11.3	31.0	42.9	73.9
Av. (3	animals)	4.0	4.3	11.1	36.5	39.2	75.6
IX	6	2.0	2.1	10.2	20.1	20.3	40.4
X	6	5.5	1.9	11.8	47.3	16.2	63.4
Av. (2	animals)	3.8	2.0	11.0	33.7	18.2	51.9
Av. (5	animals)	3.9	3.4	11.0	35.4	30.8	66.1
Injecte	d samples						
VI	6	4.3	4.3	10.6	39.8	42.2	82.0
VII	6	3.4	3.8	10.8	31.7	35.2	66.8
VIII	6	3.8	5.2	10.9	35.0	46.6	81.6
Av. (3	animals)	3.8	4.4	10.8	35.5	41.3	76.8
IX	6	1.2	2.8	10.4	13.4	26.6	40.0
X	6	5.1	3.5	11.2	44.6	31.2	75.8
Av. (2	animals)	3.2	3.2	10.8	29.0	28.9	57.9
Av. (5	animals)	3.6	3.9	10.8	32.9	36.4	69.2
			(cont	inued)			

Table 4 (continued)

Animal No. of	No. s. obta:	lices Lned	Possible no.		Slices obtained	
no. muscros	Firm Co	rumbly	slices	Firm	Crumbly	Total
				70	%	h
en e	LACT	TIC ACI	D INJECTI	ON		
Control samples						
VI 6	5.2	3.7	10.8	47.3	34.3	81.6
VII 6	4.2	2.8	11.4	37.5	26.2	63.7
VIII 6	3.6	2.7	11.3	33.4	23.5	56.9
Av. (3 animals)	4.3	3.1	11.2	39.4	28.0	67.4
IX 6	2.2	2.4	10.8	20.9	22.2	43.1
X 6	5.8	1.9	11.2	51.4	17.2	68.6
Av. (2 animals)	4.0	2.2	11.0	36.2	19.7	55.8
Av. (5 animals)	4.2	2.7	11.1	38.1	24.7	62.8
Injected samples	с. Г.					
VI 6	3.9	4.0	10.9	34.4	37.4	71.8
VII 6	4.8	2.2	10.9	42.3	19.9	62.2
VIII 6	6.5	1.9	11.2	58.6	16.6	75.2
Av. (3 animals)	5.1	2.7	11.0	45.1	24.6	69.7
IX 6	2.2	2.2	10.6	20.8	21.5	42.2
X 6	6.2	2.9	11.0	56.6	26.0	82.6
Av. (2 animals)	4.2	2.6	10.8	38.7	23.8	62.4
Av. (5 animals)	4.7	2.6	10.9	42.5	24.3	66.8

graphically for each animal in Figure 29.

Sodium chloride and lactic acid together were no more effective than sodium chloride alone in improving the slicing quality of the beef. The figures for the average percentages of firm slices from the five animals were 35.4 and 32.9, respectively for control and injected samples in the sodium chloride-lactic acid series. The results for individual animals are shown in graphs, Figure 30.

The results with lactic acid injection were only slightly more favorable than for the other two kinds of injection. The averages for the firm slices from the five animals were 42.5 per cent for the injected meat and 38.1 per cent for the uninjected samples. However, the variability of results for the different animals (Figure 31) was so large that no real improvement in slicing quality was secured.

The averages of the judges' scores for slicing quality of the canned beef are given in Table 5. The differences in scores between the control and injected samples were not large enough to be significant with the sodium chloride series. The differences between muscles as to slicing quality were highly significant. The semitendinosus was rated the highest of the muscles in sliceability; the semimembranosus, the lowest. Within the group composed of Animals VI, VII, and VIII, the differences among animals were not significant,

Figure 29. Number of Firm Slices. Sodium chloride injection.

injection.

Figure 31. Number of Firm Slices. Lactic acid injection.

Animal	No. of	Slice- ability	Slice Canned	ability on Unslice-	basis Slices	of wt. able meat
no.	muscles	SCOTO	meat	able meat	(by dif	ference
			gm.	gm.	gm.	%
ang kanalan sa ta si si Sa sa		SODIUM CHI	LORIDE I	NJECTION		
Control s	amples					
VI	6	7.6	383	46	338	87.8
VII	6	7.6	392	111	281	71.4
VIII	6	7.9	370	73	296	80.2
Av. (3 an	imals)	7.7	382	77	305	79.8
IX	6	7.0	377	132	245	65.2
X	6	7.2	357	69	288	81.0
Av. (2 an	imals)	7.1	367	100	266	73.1
Av. (5 an	imals)	7.5	376	86	290	77.1
Injected	samples					
VI	6	7.6	370	45	325	87.9
VII	6	6.8	384	125	259	68.9
VIII	6	6.7	356	126	231	64.6
Av. (3 an	imals)	7.0	370	99	272	73.8
тх	6	5.0	364	198	166	45.7
X	6	8.3	364	47	317	87.1
Av. (2 an	imals)	6.6	364	122	242	66.4
Av. (5 an	imals)	6.9	368	108	260	70.8
		(00	ntinued)			

Table	5.	Averages Averages	of of	Judges' Ratings Sliceability on	of Sl: Basis	ice of	ability Weight.	and
				and the second	E an			

A	N	Slice-	Slice	ability o	n basis	of wt.
no.	NO. OF muscles	ability score	Canned meat	Unslice- able meat	Slices (by dif	ble meat ference)
	 	.	em.	gm.	gn.	%
	SODIUM	CHLORIDE A	ND LACTI	C ACID IN	JECTI ON	
Control	samples					
IV IIV IIIV	6 6 6	7.8 7.5 7.2	382 387 372	69 82 80	312 305 292	82.0 79.3 78.6
Av. (3	animals)	7.5	380	77	30 3	80.0
IX X	6 6	5.4 7.5	369 367	194 124	175 243	47.5 67.0
Av. (2	animals)	6.4	368	159	209	57.2
Av. (5	enimals)	7.1	375	110	265	70.9
Injecte	d samples					
IIV IIV IIIV	6 6 6	8.4 6.2 7.6	379 384 356	56 113 56	323 270 300	85.3 71.4 84.3
Av. (3	animals)	7.4	373	75	298	80.3
IX X	6	6.1 7.9	361 366	195 68	16 6 299	46.0 81.5
Av. (2	animals)	7.0	364	132	232	63.8
Av. (5	animals)	7.2	369	98	272	73.7

Table 5 (continued)

		Slice-	Sliceabil	ity on basis	of wt.
Animal no.	No. of muscles	ability of score	anned Uns meat able	lice- Slice meat (by di	able meat fference)
с			gm. g	m. gm.	%
1. 2. ^{1.} 1 1 ¹		LACTIC ACI	D INJECTIO	N	
Control	samples		, F - V		
IV IIV IIIV	6 6 6	8.2 6.2 6.6	379 396 1 371 1	57 322 24 272 46 225	84.5 68.6 60.7
Av. (3	animals)	7.0	382 1	09 273	71.3
IX X	6 6	5.8 7.3	374 1 365 1	91 183 01 264	49.0 73.0
Av. (2	animals)	6.6	370 1	46 224	61.0
Av. (5	anim als)	6.8	377 1	24 253	67.2
Injecte	d samples		й		
IV IIV IIIV	6 6 6	7.6 7.0 7.3	371 371 1 357	84 288 11 260 69 289	77.8 69.8 81.2
Av. (3	animals)	7.3	366	88 279	76.3
IX X	6	5.3 7.6	357 1 345	82 175 5 6 290	49.2 83.9
Av. (2	animals)	6.4	351 1	19 232	66.6
Av. (5	animals)	7.0	360 1	00 260	72.4

but the differences between Animals IX and X were highly significant.

The scores for slicing quality of the injected samples in the sodium chloride-lactic acid series were not significantly different from the control samples. Muscle differences were significant at the .01 level for Animals VI, VII, and VIII, but the differences were not quite large enough to be significant for Animals IX and X. The meat of Animal X sliced significantly better than that of Animal IX.

Lactic acid injection made no significant difference in judges' scores for slicing quality. Muscle differences were significant at the .05 level. The judges rated the meat of Animal X significantly higher in slicing quality than the meat of Animal IX. A possible explanation of the higher rating of Animal X in sliceability than for Animal IX is that the connective tissue of the aged dairy cow (Animal X) was firm enough, even after processing for 90 minutes, to hold the muscle fibers together.

The percentage values for sliceability calculated by deduction of the weight of the unsliceable meat from the weight of the meat in the can (See Table 5) are in good agreement with the values obtained by count of slices and by judges' ratings of sliceability.

pH Values

The average pH values for the raw meat are approximately 5.45, regardless of aging 1 or 8 days or the kind of injection (Table 6). The range among the average values for the five animals is 5.61 to 5.37. Canned beef had higher pH values than the raw meat and the meat of Animal X, either cooked or uncooked, was higher in pH value than the meat of the other animals. Animal X was the aged dairy cow and the meat of this animal was a dark red color. The raw meat was sticky and rubbery and had a rather strong odor. Hall (17) reported a relationship between dark color in beef and high pH values. Bate-Smith (7) enumerated qualities found in beef having high pH values, among which were dark color, slimy or sticky feel, and flabbiness. The kind of injection had little apparent effect on the pH values of the raw or canned beef.

Weight Changes

The animals used in this series of experiments were fairly uniform in weight. The live weights of the four steers were 816, 800, 830, and 930 pounds, respectively; the weight of the dairy cow was 965 pounds. The warm dressed weights of the half carcasses were, for left and right halves of each animal, respectively: 231, 232; 222, 216; 230, 233; 280, 275; and 195, 190 pounds. The cow had the highest * . . .

Table 6. Averages of pH Values.

Animal no.	No. of muscles	Beef muscles (uninjected) aged one day	Beef cuts aged eight days	Canned beef
	n na agusta mininte di Shifiku da ya kanya kitan ya kata kata	рИ	pH	pH
		CONTINUE OUT ODT DD T	TERCERT AN	
		SODIUM CHLORIDE I	NJECTION	
Left mus	scle		Control s	amples
VI	6	5.38	5.44	5.80
VII	6	5.42	5.44	5.68
VIII	6	5.40	5.38	5.75
Av. (3	animals)	5.40	5.42	5.74
IX	6	5.38	5.37	5.64
X	6	5.61	5.55	5.93
Av. (2 a	animals)	5.50	5.46	5.78
Av. (5 a	animals)	5.44	5.44	5.76
Right m	uscle		Injected	samples
VT	6	5.39	5.43	5.77
VII	6	5.44	5.49	5.65
VIII	6	5.42	5.41	5.73
Av. (3	animals)	5.42	5.44	5.72
IX	6	5.38	5.42	5.62
X	6	5.60	5.54	5 .86
Av. (2 a	animals)	5.49	5.48	5.74
Av. (5	animals)	5.45	5.46	5.73
		(continued)		

Animal no.	No. of muscles	Beef muscles (uninjected) aged one day	Beef cuts aged eight days	Canned beef
		PH	Нq	pH
	SCDIUM	CHLORIDE AND LACTIC	ACID INJECTIO	N
Left mus	scle		Control	samples
VI	6	(same as for	5.44	5.80
VII	6	sodium chloride	5.42	5.64
VIII	6	injection)	5.39	5.73
Av. (3 a	animals)		5.42	5.72
IX	6		5.39	5.65
X	6		5.53	5.93
Av. (2 a	animals)	an a	5.46	5.79
Av. (5 e	animals)		5.43	5.75
Right m	uscle		Injected	samples
VI	6	(same as for	5.47	5.78
VII	6	sodium chloride	5.48	5.63
VIII	6	injection)	5.41	5.70
Av. (3 a	animals)		5.45	5.70
IX	6		5.42	5.64
X	6	a frantsissi setti s Anno 1970 - Anno 1970 - Anno Anno 1970 - Anno	5.60	5.87
Av. (2	animals)	na serie de la construcción de la c Referencia de la construcción de la Referencia de la construcción de la	5.51	5,76
Av. (5	animals)		5.48	5.72
		(continued)		

Table 6 (continued)

Animal No. of no. muscles	Beef muscles (uninjected) aged one day	Beef cuts aged eight days	Canned beef
n an an an an an an ann an an an an an a	рН	pH	pH
	LACTIC ACID INJEC	TI ON	
Left muscle		Control s	amples
VI 6 VII 6 VIII 6	(same as for sodium chloride injection)	5.42 5.48 5.40	5.80 5.67 5.73
Av. (3 animals)		5.43	5.73
IX 6 X 6		5.38 5.54	5.65 5.92
Av. (2 animals)		5.46	5.78
Av. (5 animals)		5.44	5.75
Right muscle		Injected	samples
VI 6 VII 6 VIII 6	(same as for sodium chloride injection)	5.47 5.48 5.41	5.82 5.68 5.73
Av. (3 animals)		5.45	5.74
IX 6 X 6		5.38 5.56	5.65 5.94
Av. (2 animals)		5.47	5.80
Av. (5 animals)		5.46	5 .76

live weight but the lowest dressed weights for each half of the carcass of any of the animals. The weights of the muscles (untrimmed) after separation from the carcass are shown in Table 7.

The cuts of beef from each animal were trimmed to approximately a certain weight prior to aging. The averages of the weights of the beef cuts, of the beef plus injecting solution, and of the cuts after aging are shown in Table 8. The control samples lost a small percentage of their initial weight during the aging period; injected samples had higher average weights after aging than their initial weights, i. e., some of the injected solution remained in the meat at the end of 8 days of aging. Weight differences associated with a particular kind of injection were very small.

The average figures for the proportions of meat and of liquid in the can after processing were fairly uniform for the control and injected samples with the three kinds of injection (Table 9). Approximately two-thirds of the weight of meat put into the can was in the form of meat after processing and the other one-third was liquid. The differences in the percentage of liquid to meat for control and injected samples were too small to be of importance. The average values for the percentage of liquid in the cans of meat processed 90 minutes were no higher than for the meat processed 65 minutes.

- 126 -

Muscle	Wt.	of muscle Left	(untrimmed) Right
######################################	****	lb.	1b.
Animal VI			*
Longissimus dorsi, loin portion		5.9	6.0
Longissimus dorsi, rib portion		7.5	7.2
Psoas major and psoas minor		4.1	3.7
Semitendinosus		3.5	3.4
Semimembranosus		8.5	8.6
Biceps femoris		8.5	9.1
Animal VII			
Longissimus dorsi, loin portion		6.2	6.2
Longissimus dorsi, rib portion		7.8	8.0
Psoas major and psoas minor		3.7	4.3
Semitendinosus		3.1	3.4
Semimembranosus		9.1	8.7
Biceps femoris		9.3	8.9
Animal VIII			
Longissimus dorsi, loin portion		5.9	6.5
Longissimus dorsi, rib portion		10.1	10.5
Psoas major and psoas minor		4.0	4.1
Semitendinosus		3.5	3.6
Semimembranosus		9.9	9.6
Biceps femoris		10.1	9.7
Animal IX			
Longissimus dorsi, loin portion		7.0	6.9
Longissimus dorsi, rib portion		11.6	11.0
Psoas major and psoas minor		5.6	4.9
Semitendinosus		4.7	4.7
Semimembranosus		11.1	11.9
Biceps femoris		12.6	11.8
Animal X			
Longissimus dorsi, loin portion		4.0	3.8
Longissimus dorsi, rib portion		7.0	5.9
Psoas major and psoas minor		3.8	3.2
Semitendinosus		2.8	2.9
Semimembranosus		11.5	11.9
Biceps femoris		8.4	8.1

Table 7. Weight of Muscles (Untrimmed) after Separation from Carcass.

Animal no.	No. of muscles	Initial wt.	Beef plus injecting soluti o n	Wt. bee agi:	f after ng
		gm.	gm.	gm.	%
				·	
•		SODIUM CHI	ORIDE INJECTIC	N	
Control	samples			•	
VI	6	606		600	99.0
VII	6	602		593	98.5
VIII	6	606		596	98.4
Av. (3	animals)	605		596	98.6
тх	6	605		590	97.6
X	6	605		599	99.0
Av. (2	animals)	6 05		594	98.3
Av. (5	animals)	605		59 6	98.5
Injecte	d samples				
VI	6	605	665	638	105.5
VII	6	604	664	644	106.5
VIII	6	606	666	631	104.1
Av. (3	animals)	605	665	638	105.4
ТХ	6	605	665	638	105.3
X	6	606	666	642	106.0
Av. (2	animals)	606	666	640	105.6
Av. (5	animals)	605	665	639	105.5
Av. (2 Av. (5	animals) animals)	606 605	666 665	640 639	108

Table 8. Averages of Initial Weights of Beef Cuts, of the Cuts Plus Injecting Solution, and of the Cuts after Aging.

Animal no.	No. of muscles	Initial wt.		Beef plus injecting solution		Beef plus injecting solution		Wt. be ag	ef after ing
		gm.		gm.		gm.	%		
	SODIUM	CHLORIDE	AND	LACTIC	ACID	INJECTION			
Control	l samples								
VI VII VIII	6 6 6	606 603 606				597 594 597	98.6 98.5 98.5		
Av. (3	animals)	605				596	98.5		
IX X	6 6	604 605				591 597	97.9 98.6		
Av. (2	animals)	604				594	98.2		
Av. (5	animals)	605				595	98.4		
Injecto	ed samples								
VI VII VIII	6 6 6	606 604 606		666 664 666		636 636 636	105.1 105.3 104.9		
Av. (3	animals)	605		665		6 36	105.1		
IX X	6 6	60 4 605		664 665		628 640	103.8 105.8		
Av. (2	animals)	604		664		634	104.8		
Av. (5	animals)	605		66 5		635	105.0		

Table 8 (continued)

Animal no.	No. of muscles	Initial wt.	Beef plus injecting solution	Wt. bee ag:	ef after Ing
		gm.	gm.	gm.	%
•		LACTIC AC	ID INJECTION	· · · · · · ·	• . ts
Control	samples				
VI VII VIII	6 6 6	605 604 606		600 594 597	99.3 98.4 98.4
Av. (3 e	inimals)	605		597	98.7
IX X	6	60 6 605		59 6 598	98.5 98.9
Av. (2 s	nimals)	60 6		59 7	98 .7
Av. (5 e	nimals)	605		5 97	98.7
Injected	samples				
IV IIV IIIV	6 6 6	604 603 606	664 663 666	624 622 615	103.3 103.1 101.4
Av. (3 a	inimals)	604	664	620	102.6
IX X	6 6	604 606	664 666	615 634	101.8 104.5
Av. (2 s	inimals)	605	665	624	103.2
Av. (5 s	nimals)	605	665	622	102.8

Table 8 (continued)

.

no.	miaalaa		anti-Menandal states was in			L440
	muscres	processing	Mea	at	Liquid	
		gm.	gm.	%	gm •	%
		O OD THE OUT OD TOD	TAT	OT AN		
		SODIOM CHRONIDE	LNJE	UTION		
Control	samples					
VI	6	569	383	67.4	185	32.5
VII	6	570	392	68.8	173	30.3
VIII	6	569	370	64.9	195	34.3
Av. (3	animals)	569	382	67.0	184	32.4
тх	6	569	377	66.3	184	32.4
x	6	569	357	62.8	188	33.0
Av. (2	animals)	569	367	64.6	186	32.7
Av. (5	animals)	569	376	66.0	185	32.5
injecte	ad samples		17 101 co			~~ ~ ~
VI	6	570	370	64.9	197	34.5
VII	· 6	570	284	67.4	180	31.0
VIII	6	570	000	6.20	200	90°T
Av. (3	animals)	570	370	64.9	194	34.1
IX	6	568	364	63.9	180	31.6
Х	6	569	364	64.0	185	32.4
Av. (2	animals)	568	364	64.0	182	32.0
Av. (5	animals)	569	368	64.5	190	33.2
VI VII VIII Av. (3 IX X Av. (2 Av. (5	6 6 6 animals) 6 6 8 animals) animals)	570 570 570 570 568 569 568 569	370 384 356 370 364 364 364 368	64.9 67.4 62.5 64.9 63.9 64.0 64.0 64.5	197 180 206 194 180 185 182 190	3 3 3 3 3 3 3 3 3 3

Table 9. Averages of Weights of Beef before Processing and Weights of Meat and of Liquid after Processing.

Table 9 (continued)

Animal	No. of	Wt. before		Wt. after	processi	Ing
no. muscles		processing	N	Meat		id
	<u></u>	gm.	gm.	%	gm.	%
	SODIUM	CHLORIDE AND	LACTIC	ACID INJE	CTI ON	
Control	l samples					
IV IIV IIIV	6 6 6	569 569 570	382 387 372	67.0 68.0 65.3	183 179 192	32.2 31.6 33.7
Av. (3	animals)	569	380	66.8	185	32.5
IX X	6 6	569 569	369 367	64.8 64.5	18 7 186	32.8 32.8
Av. (2	animals)	569	368	64.6	186	32.8
Av. (5	animals)	5 69	375	65.9	185	32.6
Injecte	ed samples					
IV IIV IIIV	6 6 6	570 569 570	379 384 356	66.5 67.3 62.6	178 182 207	31.3 32.0 36.3
Av. (3	animals)	570	373	65.5	189	33.2
IX X	6 6	569 569	361 366	63.5 64.4	19 1 178	33.6 31.3
Av. (2	animals)	569	364	64.0	184	32.4
Av. (5	animals)	569	369	64.9	187	32.9

Animal	No. of	Wt. before	Wt. after processing			
no.	muscles	processing	Mea	at	Liq	uid
		gm.	gm.	%	gm.	%
a An an	4	LACTIC ACID	INJECTI	ON		
Control	samoles					
VI	6	569	379	66.6	187	32.8
VII	6	569	396	69 .6	170	29.8
VIII	6	569	371	65.2	194	34.0
Av. (3	animals)	569	382	67.1	184	32.2
ТХ	6	569	374	65.8	175	30.7
X	6	569	365	64.1	208	36.5
Av. (2	animals)	569	370	65.0	192	33.6
Av. (5	animals)	569	377	66.3	187	32.8
Injecte	d samples					
VI	6	569	371	65.2	191	33.6
VII	6	569	371	65.2	192	33.7
VIII	6	568	357	62.9	205	36.1
Av. (3	animals)	569	366	64.4	19 6	34.5
IX	6	568	35 7	62.8	192	33.8
X	6	569	345	60.7	176	31.0
Av. (2	animals)	568	351	61.8	184	32.4
Av. (5	animals)	569	360	63.4	19 1	33.6

Table 9 (continued)

General Characteristics of Beef Samples

Some characteristics noted in the raw meat have already been mentioned, i.e., the color, rubber-like quality, and stickiness of the meat of Animal X. Muscles of one animal differed in color; for example, the semitendinosus was noticeably lighter in color than the other muscles; one portion of the biceps femoris was a lighter pink than the rest of the muscle. During aging the amount of "drip" from the beef cuts of the dairy cow was small. The raw meat of this animal was very difficult to cut into pieces.

The slices of canned meat were observed for their general appearance. Much separation at the primary bundles of muscle fibers was noted. The connective tissue meshwork was either fragile or small in amount. A stringy texture in the meat was associated with the tendency to separate into small bundles of muscle fibers. Many of the samples injected with either of the solutions containing sodium chloride, and a few other samples, had an iridescent appearance at the surface of the slices.

The cans of meat placed in the incubator at 100°F. immediately after removal from the processing retort showed no signs of spoilage after 6 months or more of storage. The fibrous nature of the cooked meat samples after maceration in the Waring blendor during the preparation of pH samples was noted. The semitendinosus, semimembranosus, and biceps femoris were particularly fibrous. The pull on the electric motor of the blendor was noticeable when the samples from the aged dairy cow were being macerated.

The liquid from the canned meat was brown, some samples having a yellow cast, others shading toward red. Some variations in the brightness or dullness were observed, but no definite pattern could be distinguished.

Gelation of Liquid

Observations of the liquid from the canned beef after 24 hours of refrigeration showed wide variations in gelation. Some samples were stiff, quivering gels; others were thin, watery liquids. Varying degrees of gelation between these extremes were noted. In general, firmer gels were found among the samples from Animals VI, VII, and VIII, processed 65 minutes, than in those from Animals IX and X, processed 90 minutes. Gelation was less extensive for most of the samples from Animal IX than for those from the other animals.

It appeared that the processing time of 65 minutes was sufficient to bring about degration of collagen to gelatin, but that, by the end of 90 minutes, the gelatin was also partially degraded. The differences in results between Animals IX and X, both of which were processed 90 minutes, may be accounted for in the higher initial content of tough connective tissue in the aged dairy cow (Animal X) than in the younger animal. The injection treatment with sodium chloride, lactic acid, or the mixture of two in solution had no consistent effect on gelation of the liquid from the canned meat of any of the animals.
SUMMARY

A study was made of the effect on canned beef of injecting the raw meat with one of the following solutions: sodium chloride, lactic acid, or a mixture of sodium chloride and lactic acid. The concentration of sodium chloride in each of the two salt-containing solutions was 15 per cent, making the proportion of approximately 1.5 grams of salt to 100 grams of meat after injection. The lactic acid solution, as well as the solution with both sodium chloride and lactic acid, contained sufficient acid to give a pH value of 3.4 for the solution.

Five animals were used in the study; four were steers (carcass grade Commercial) and one was an aged dairy cow (carcass grade Cutter). Matching pairs of the rib and loin portions of the longissimus dorsi, psoas major and psoas minor, semitendinosus, semimembranosus, and biceps femoris muscles were separated from the carcass 1 day after slaughter and divided into three or six cuts for aging and canning.

Cuts from the right side of the animal were injected; those from the left side were used as controls. All the cuts were aged 8 days at 34° to 36°F. prior to canning. Samples

- 137 -

for histological study and pH determinations were taken from the fresh muscle, the aged cuts, and from the canned meat. The meat from three steers was processed at 240°F. (10 pounds) for 65 minutes; from the fourth steer and the aged dairy cow, 90 minutes.

The canned meat was sliced on a mechanical slicer and representative slices were rated by the judges for six palatability factors. Slicing quality was evaluated by: (1) number and characteristics of slices obtained, (2) by weight of unsliceable meat, and (3) by judges' scores. Statistical analyses were made of the scores for flavor of the meat, tenderness, juiciness, texture, and slicing quality to determine the significance of the differences. Observations were made of the general appearance of the canned beef and the liquid.

Aroma scores for the canned beef were not affected by the injecting treatments, but were lower for the aged dairy cow than for the other animals.

Flavor, tenderness, and texture scores for the canned beef from the five animals were markedly improved (significant at the .01 level) by injection of the meat with either sodium chloride solution or the combination of sodium chloride and lactic acid. The lactic acid solution alone had no significant effect on these three palatability factors. The scores for the flavor of the canned beef were not affected by the muscles used, but the beef of the aged dairy cow was undesirably strong flavored.

Tenderness was influenced by the injecting treatments and variations occurred among muscles and among animals.

Differences in texture were found in muscles and in animals. The psoas muscles had the highest rating; the loin portion of the longissimus dorsi and the semimembranosus, the lowest. Beef from the dairy cow had a low texture rating.

The average juiciness scores for the sodium chlorideinjected samples of canned beef processed 65 minutes were higher than for the controls, but the differences between the juiciness scores for the injected samples processed 90 minutes and the control samples were not significant. Combined salt and lactic acid solution improved the juiciness of the injected samples compared to control samples, but the differences were significant only at the .05 level. Differences in the lactic acid-treated samples versus controls were within experimental error.

The flavor of liquid from the can was improved by treatment of beef with either of the salt-containing solutions.

Slicing quality of the canned beef was little affected by injection of the raw meat with any of the three solutions tested. Little variation in sliceability occurred among the cuts processed 65 minutes. Variations did occur among those processed 90 minutes; the beef from the cow sliced better than that from the steer. Muscles were markedly different in sliceability in all but one series of tests. The semitendinosus consistently sliced well.

The histological characteristics observed in the longitudinal sections of the rib portion of the longissimus dorsi helped to explain the results secured in the palatability scores. Some disintegration of the fiber striations had occurred after aging 8 days. The extent of this disintegration varied with the muscle and the animal.

The effect of injection with either sodium chloride solution or a mixture of sodium chloride and lactic acid was an increase in the number and extent of the disintegration fissures in the fibers. This disintegration would be expected to contribute to tenderness of the meat, and the judges rated the injected samples receiving either of these treatments as more tender than the controls. Samples injected with only lactic acid appeared much like the control samples in histological features.

The average pH values for the five animals were similar for fresh muscle and for the cuts of beef aged 8 days, regardless of injection treatment. These values were close

- 140 -

to pH 5.45. The meat of the aged dairy cow was higher in pH than the meat of the steers and had the dark red color and the sticky, rubbery feel that are characteristic of meat of high pH. The canned beef samples of all animals were higher in pH than the raw meat. Injection with any of the three solutions had little effect on pH values of the meat after canning.

Small losses in weight were found in the control cuts of beef, but the average weight of the injected samples was greater after 8 days of aging than the initial weight. Thus some of the injected solution remained in the meat. The canned beef was approximately two-thirds meat and one-third liquid. Injection of the raw meat made little difference in the proportion of liquid to meat in the canned product.

CONCLUSIONS

Under the conditions of this study the following conclusions are made:

1. As indicated by palatability scores, the injection of beef cuts with either sodium chloride solution or a combination of sodium chloride and lactic acid solution markedly improved the flavor, tenderness, and texture of the canned beef compared to uninjected control cuts. Juiciness was improved for some of the cuts but not for all. Injection of beef cuts with lactic acid solution had no significant effect on any of the six palatability factors evaluated. Aroma scores were little affected by the injection treatment of the meat. Flavor of the liquid from the can was slightly improved by injection with the salt-containing solutions but not by the lactic acid solution.

2. The slicing quality of the canned meat was fairly low, and no improvement was secured by injection of the raw meat with any of the three solutions tested. Sliceability of the canned beef, however, varied among the muscles and the animals.

3. The tenderness of the canned beef was related to the microscopic changes which occurred in the beef.

- 142 -

LITERATURE CITED

- 1. Anson, M. L. Protein denaturation and the properties of protein groups. Adv. in Protein Chem. 2:361-386. 1945.
- 2. Astbury, W. T. X-rays and the stoichiometry of the proteins. Adv. in Enzymology 3:63-108. 1943.
- 3. ----- and Bell, F. O. Nature of the intramolecular fold in alpha-keratin and alpha-myosin. Nature (London) 147:696-699. 1941.
- 4. ----- and Dickinson, S. X-ray studies of the molecular structure of myosin. Proc. Roy. Soc. Lond. Ser. B 129:307-332. 1940.
- 5. Bailey, K. The proteins of skeletal muscle. Adv. in Protein Chem. 1:289-317. 1944.
- 6. Bate-Smith, E. C. Native and denatured muscle proteins. Proc. Roy. Soc. Lond. Ser. B 124:136-150. 1937.
- 7. ----- The physiology and chemistry of rigor mortis, with special reference to the aging of beef. Adv. in Food Research 1:1-38. 1948.
- 8. ----- Physiology of muscle proteins. Great Britain, Dept. Sci. Ind. Res., Report of the Food Investigation Board for the Year 1935. 1936.
- 9. Bell, E. F., Morgan, A. F., and Dorman, A. Collagen determination in cooked meat. Food Research 6: 245-263. 1941.
- 10. Bendall, J. R. The effect of cooking on the creatinecreatinine, phosphorus, nitrogen and pH values of raw lean beef. Jour. Soc. Chem. Ind. 65: 226-230. 1946.
- 11. Bull, H. B. Protein structure. Adv. in Enzymology 1:1-42. 1941.

- 13. Crain, E. R. Palatability studies of meat. II. A comparison of three brining solutions on paired less tender cuts, cooked by moist heat. Unpublished M. S. thesis. Ames, Iowa, Iowa State College Library. 1938.
- 14. Crocker, E. C. Flavor of meat. Editorial review. Food Research 13:179-183. 1948.
- 15. Deatherage, F. E., and Harsham, A. Relation of tenderness of beef to aging time at 33-35°F. Food Research 12:164-172. 1947.
- 16. Fenn, W. O., and Maurer, F. W. The pH of muscle. Protoplasma 24:337-345. 1935.
- 17. Hall, J. L., Latschar, C. E., and Mackintosh, D. L. Characteristics of dark-cutting beef. Survey and preliminary investigation. Kan. Agr. Exp. Sta. Tech. Bul. 58. Part 4. 1944.
- 18. Harrison, D. L. Histological, physical, and organoleptic changes in three grades of beef during aging. Unpublished Ph. D. thesis. Ames, Iowa, Iowa State College Library. 1947.
- 19. Lowe, B. Experimental cookery. 3d. ed. New York, John Wiley & Sons. 1943.
- 20. Maximow, A. A., and Bloom, W. A textbook of histology. 5th ed. Philadelphia, W. B. Saunders Co. 1948.
- 21. Mirsky, A. E. Protein denaturation. Cold Spring Harbor Symposia on Quantitative Biology 6:150-156. 1938.
- 22. National Canners Association. Research Laboratory. Processes for low-acid canned foods in metal containers. Bul. 26-L. 6th ed. Washington, D. C., The Assoc. 1946.
- 23. Paul, P. C. Changes in palatability, microscopic appearance, and electrical resistance in beef during the onset and passing of rigor and during subsequent storage. Unpublished Ph. D. thesis. Ames, Iowa, Iowa State College Library. 1943.

- 24. Paul, P., Lowe, B., and McClurg, B. R. Changes in histological structure and palatability of beef during storage. Food Research 9:221-233. 1944.
- 25. ----- and McLean, B. B. Studies on veal. I. Effect of different internal temperatures on veal roasts from calves of three different weights. Food Research 11:107-115. 1946.
- 26. ----- and -----. Studies on veal. II. Variations between some muscles of the hind quarter. Food Research 11:116-120. 1946.
- 27. Prudent, I. Collagen and elastin content of four beef muscles aged varying periods of time. Unpublished Ph. D. thesis. Ames, Iowa, Iowa State College Library. 1947.
- 28. Ramsbottom, J. M., and Strandine, E. J. Comparative tenderness and identification of muscles in wholesale beef cuts. Food Research 13:315-330. 1948.
- 29. -----, and Koonz, C. H. Comparative tenderness of representative beef muscles. Food Research 10:497-509. 1945.
- 30. Sair, L. and Cook, W. H. Relation of pH to drip formation in meat. Canad. Jour. Res., Sect. D 16:255-267. 1938.
- 31. Snyder, C. M. The effect of salt on total cooking losses of various cuts of beef. Unpublished M. S. thesis. Ames, Iowa, Iowa State College Library. 1930.
- 32. Speidel, C. C. The fundamental transverse arrangement of cross striae in myofibrils of striated muscle. Anat. Rec. 100:91-100. 1948.
- 33. Szent-Györgyi, A. Chemistry of muscular contraction. New York, The Academic Press, Inc. 1947.
- 34. ----- Nature of life. A study on muscle. New York, The Academic Press, Inc. 1948.
- 35. ----- Studies on muscle. Acta Physiol. Scand. 9: supplement 25 (in English). Stockholm. 1945.

- 36. Toepfer, E. W., Reynolds, H., Gilpin, G. L., and Taube, K. Home canning processes for low-acid foods. U. S. Dept. Agr. Tech. Bul. 930. 1946.
- 37. Tofte, G. E. Palatability studies of meat. III. The effect of brine solutions on the fiber and connective tissue of paired less-tender cuts of beef. Unpublished M. S. thesis. Ames, Iowa, Iowa State College Library. 1940.
- 38. U. S. Bureau of Home Economics and Human Nutrition. Home canning of meat. U. S. Dept. Agr. AW1-110. 1946.
- 39. Winkler, C. A. Colour of meat: I. Apparatus for its measurement, and relation between pH and colour. Canad. Jour. Res., Sect. D 17:1-7. 1939.
- 40. ----- Tenderness of meat: I. A recording apparatus for its estimation, and relation between pH and tenderness. Canad. Jour. Res., Sect. D 17:8-14. 1939.

ACKNOWLEDGMENTS

The writer wishes to express sincere appreciation to Professor Belle Lowe for her constant guidance and help throughout this study. The cooperation of Professor R. G. Tischer and Mr. E. A. Kline is deeply appreciated. The writer wishes to thank Professor P. G. Homeyer for assistance in the statistical aspects of the study. Grateful acknowledgment is made of the help of Mrs. Alma R. Plagge in the laboratory work and in the evaluation of the canned meat.

APPENDIX

Table 1. Palatability of Canned Beef. Average palatability scores grouped according to muscle used and processing time. Scoring range is 10 for extremely good quality to 1 for extremely poor quality.

Antmalk	Semula			Palatab	llity scor	'8S	
no.	no.	Aroma	F] Meat	lavor Liquid	Tender- ness	Juici- ness	Tex- ture
	LONG	JISSIMUS	DORSI	MUSCLE,	LOIN PORT	ION	
Sodium	<u>chloride</u>	injecti	on				
Control	samples				· :		
VI	162	7.7	7.0	6.3	6.3	5.7	5.0
VII	188	7.7	7.0	6.3	5.7	5.3	5.0
VIII	211	8.0	7.0	5.7	4.0	5.3	3.3
Av. (3	animals)	7.8	7.0	6.1	5.3	5.4	4.4
IX	234	7.7	6.7	5.0	6.7	4.3	5.0
X	260	5.7	5.0	5.3	5.7	4.3	3.3
Av. (5	animals)	7.4	6.5	5.7	5.7	5.0	4.3
Injecte	d sample:	3					
VI	162	7.7	8.3	7.7	8.0	6.3	6.7
VIT	188	7.3	6.7	6.3	5.3	5.0	4.0
VIII	211	7.3	7.3	6.0	4.7	5.3	3.7
Av. (3	animals)	7.4	7.4	6.7	6.0	5.5	4.8
IX	234	7.3	7.7	7.0	8.0	5.0	6.7
х	260	6.7	5.7	5.3	7.7	5.7	5.7
Av. (5	animals)	7.3	7.1	6.5	6.7	5.5	5.4

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

		Palatability scores								
Animal no.	Sample no.	Aroma	Fla Meat	vor Liquid	. Tender- ness	Juici- ness	Tex- ture			
I	ONGISSIMUS	3 DORST	MUSCLE,	LOIN	PORTION (c	continued)	i .			
Lactic	acid inje	etion		:	e et el station L'étai					
Control	samples				g de la construcción Recurso	· · · ·				
VI VII	164 187	8.3 7.7	7.3	6.7 7.0	5.3 5.7	6.0 4.7	4.3 3.7			
VIII	210	8.0	6.7	5.7	4.0	4.3	4.0			
Av. (3	animals)	8.0	6.9	6.5	5.0	5.0	4.0			
IX	236	8.0	7.0	5.0	6.3	4.0	4.3			
X	259	6.3	5.3	5.0	5.3	3.7	3.3			
Av. (5	animals)	7.7	6.6	5.9	5.3	4.5	3.9			
Injecte	d samples									
VI	164	8.0	8.0	7.3	6.0	5.7	5.3			
VII	210	7.7	7.0	6.0	4.0	5.0	3.7			
Av. (3	anima ls)	7.8	7.3	6.7	5.1	5.1	4.4			
IX	236	7.3	7.3	5.7	6.7	3.7	4.3			
X	259	6.3	5.3	5.7	6.3	4.0	4.0			
Av. (5	animals)	7.4	6.9	6.3	5.7	4.6	4.3			
		e di serie Altri	(conti	nued)						

Table 1 (continued)

	A		P	alatab	ility sc	ores	
no.	no.	Aroma	Flay Meat	vor Liguid	Tender ness	- Juici- ness	Tex- ture
	LONGISSIMU	IS DORSI	MUSCLE,	LOIN	PORTION	(continued)	
Sodium	<u>chloride</u>	and lac	tic acid	injec	tion		
Control	L samples						
IV IIV IIIV	163 186 212	7.7 7.7 7.7	8.0 7.3 7.0	6.7 8.0 5.7	6.3 7.7 4.7	7.0 5.3 5.7	5.3 6.0 4.3
Av. (3	anim als)	7.7	7.4	6.8	6.2	6.0	5.2
IX	235	7.3	7.0	5.3	6.0	3.7	4.7
X	258	6.0	6.0	5.3	6.3	4.0	3.7
Av. (5	animals)	7.3	7.1	6.2	6.2	5.1	4.8
Injecte	d samples	n An Anna Anna An Anna Anna An Anna Anna			, ' 		
VI VII VIII	163 186 212	8.0 7.7 8.0	8.3 7.0 7.0	7.0 7.7 7.3	8.0 7.7 6.3	6.0 5.7 5.7	7.0 5.0 5.0
Av. (3	animals)	7.9	7.4	7.3	7.3	5.8	5.7
IX	235	7.7	7.0	7.0	7.7	4.3	6.0
X	258	6.0	6.3	5.7	8.3	5.3	6.0
Av. (5	animals)	7.5	7.1	6.9	7.6	5.4	5.8

Table 1 (continued)

A	0	Palatability scores							
no.	no.	Aroma	F. Meat	lavor Liquid	Tender- ness	Juici- ness	Tex- ture		
	LONG	J ISS IMUS	DORSI	MUSCLE,	RIB PORTI	ON			
Sodium	<u>chloride</u>	injecti	on				м.		
Control	samples								
IV IIV IIIV	167 189 214	7.3 7.7 7.3	7.3 7.7 8.0	6.0 7.0 6.3	4.3 8.3 7.3	4.3 7.7 6.0	3.3 7.0 6.0		
Av. (3	animals)	7.4	7.3	6.4	6.6	6.0	5.4		
IX	239	7.3	8.3	6.3	8.3	5.0	6.0		
X	261	6.3	6.0	3.3	7.0	4.3	5.0		
Av. (5	animals)	7.2	7.3	5.8	7.0	5.5	5.5		
Tniecte	d sample	an Anna Anna Anna Anna Anna Anna Anna A	р 2				3 ¹		
VI VII VIII	167 189 214	7.7 8.0 8.0	7.7 8.7 8.7	7.3 8.0 8.0	8.0 9.7 9.0	6.0 8.0 7.3	6.7 8.7 8.0		
Av. (3	animals)	7.9	8.4	7.8	8.9	7.1	7.8		
IX	239	7.7	8.3	7.0	8.7	6.0	7.3		
X	261	7.0	6.3	3.3	9.3	5.0	6.3		
Av. (5	animals)	7.7	7.9	6.7	8.9	6.5	7.4		

Table 1 (continued)

no.	Aroma	Flav	nr	Mander.	Tuesd	C315
	AI Una		Flavor		Juici-	Tex-
* 11		Meat L	iquid	ness	ness	ture
ONGISSIM	US DORSI	MUSCLE,	RIB F	PORTION ((continued)	
oid inje	ction			e Series Roberts States		
samples						
165	8.3	7.7	7.0	7.7	6.3	6.7
190	8.0	8.0	7.0	8.0	6.7	6.0
215	7.7	7.7	5.7	6.3	6.3	5.3
nimels)	8.0	7.8	6.6	7.3	6.4	6.0
237	7.3	7.7	5.7	7.7	5.7	5.7
262	6.7	6.0	3.0	8.0	4.3	5.3
nimals)	7.6	7.4	5.7	7.+5	5.9	5.8
i f	- - 			a tina tina tina tina tina tina tina tin		
samples				• •	-	
165	8.0	8.0	6.3	7.7	7.7	7.0
190	8.0	7.7	7.7	7.7	6.7	6.3
215	7.7	7.7	5.7	5.3	6.0	5.0
nimals)	7.9	7.8	6.6	6.9	6.8	6.1
237	7.7	7.3	5.7	7.7	5.3	6.3
262	6.7	6.3	4.0	9.3	5.3	6.0
nimals)	7.6	7.4	5.9	7.5	6.2	6.1
	<pre>sid inje samples l65 l90 215 samples 237 262 samples l65 l90 215 samples l90 215 215</pre>	iid injection samples 165 8.3 190 8.0 215 7.7 nimels) 8.0 237 7.3 262 6.7 nimels) 7.6 samples 165 165 8.0 190 8.0 215 7.7 nimals) 7.9 237 7.7 262 6.7 nimals) 7.9 237 7.7 262 6.7 nimals) 7.9 237 7.7 262 6.7 nimals) 7.6	$\begin{array}{r} \underline{1d \ injection} \\ \underline{165 \ 8.3 \ 7.7 \ 190 \ 8.0 \ 8.0 \ 215 \ 7.7 \ 7.7 \ 7.7 \ 7.7 \ 7.8 \ 237 \ 7.3 \ 7.7 \ 262 \ 6.7 \ 6.0 \ 11mals) \ 7.6 \ 7.4 \ \hline \\ \underline{samples} \\ 165 \ 8.0 \ 7.4 \ 7.4 \ 7.7 \ 7.$	Samples1658.3 7.7 7.0 1908.08.0 7.0 215 7.7 7.7 5.7 nimels)8.0 7.8 6.6 237 7.3 7.7 5.7 262 6.7 6.0 3.0 nimals) 7.6 7.4 5.7 samples 165 8.0 7.7 7.7 215 7.7 7.7 5.7 nimals) 7.9 7.8 6.6 237 7.7 7.7 5.7 nimals) 7.9 7.8 6.6 237 7.7 7.3 5.7 262 6.7 6.3 4.0 nimals) 7.6 7.4 5.9	$\frac{110}{10} \frac{11}{10} 1$	Id injectionsamples1658.37.77.07.76.31908.08.07.08.06.72157.77.75.76.36.3nimals)8.07.86.67.36.42377.37.75.77.75.72626.76.03.08.04.3nimals)7.67.45.77.55.9samples1658.08.06.37.72157.77.75.75.36.0nimals)7.97.86.66.96.82377.77.35.77.75.32626.76.34.09.35.3nimals)7.67.45.97.56.2

			Palatability scores					
Animal	Sample	Aroma	Fla	vor	Tender-	Juici-	Tex-	
	110.		Meat	Liquid	ness	ness	ture	
	LONGISSIMU	S DORSI	MUSCLE,	RIB PO	RTION (cc	ntinued)		
Sodium	<u>chloride</u>	and lact	tic acid	inject	ion			
Control	l samples				di seria di Seria di seria di seri Seria di seria di seri			
VI	166	8.0	7.0	5.7	7.7	6.0	5.7	
VII	191	8.7	7.3	6.7	7.7	7.0	6.3	
VIII	213	8.0	8.0	6.0	8.0	6.7	7.3	
Av. (3	animals)	8.2	7.4	6.1	7.8	6.6	6.4	
IX	238	7.3	7.3	5.7	7.3	4.7	5.7	
Х	263	6.3	6.0	3.0	6.3	4.7	4.0	
Av. (5	animals)	7.7	7.1	5.4	7.4	5.8	5.8	
Injecto	ed samples				ix in the second se			
VT	166	8.0	7 7	7.3	8.3	7.0	7.3	
VII	191	7.7	8.7	8.0	8.0	7.3	6.7	
VIII	213	7.7	8.7	7.7	9.3	7.3	8.0	
Av. (3	animals)	7.8	8.4	7.7	8.5	7.2	7.3	
IX	238	7.3	8.7	8.0	9.0	5.7	7.0	
X	263	6.7	6.0	4.0	9.3	4.0	6.3	
Av. (5	animals)	7.5	8.0	7.0	8.8	6.3	7.1	

- 154 -

Table 1 (continued)

ð	0	Palatability scores								
Lemina	Sample	Anome	Fl	avor	Tender-	Juici-	Tex-			
no.	110•	AT OTHE	Meat	Liquid	ness	ness	ture			
	· .	· .								
	PS	DAS MAJOR	AND F	SOAS MIN	VOR MUSCLE	S				
	a daga ja			¥*	e .					
Sodium	chloride	injectio	m							
Control	samples			,						
VT	168	8.7	8.0	7.0	9.0	7.0	8.0			
VII	193	8.3	7.7	7.0	8.3	7.7	7.7			
VIII	218	8.3	8.0	6.0	9.0	6.3	7.7			
Av. (3	animals)	8.4	7.9	6.7	8.8	7.0	7.8			
1X	240	7.3	7.3	5.7	9.3	6.0	7.3			
X	265	6.3	4.3	4.0	9.3	5.0	6.0			
Av. (5	animals)	7.8	7.1	5.9	9.0	6.4	7.3			
		•		3						
Injecte	ed samples	3								
VI	168	8.0	8.3	7.3	9.3	7.3	8.3			
VII	193	7.7	8.7	8.0	9.7	6.7	7.7			
VIII	218	8.3	8.7	7.7	9.3	7.3	8.0			
Av. (3	animals)	8.0	8.6	7.7	9.4	7.1	8.0			
IX	240	6.7	8.0	7.3	10.0	5.7	8.0			
X	265	6.3	5.3	4.7	9.7	6.0	6.7			
Av. (5	animals)	7.4	7.8	7.0	9.6	6.6	7.7			

Table 1 (continued)

A	G7	Palatability scores								
Animal no.	Sampie	Aroma	F1	avor	Tender-	Juici-	Tex-			
110.	****		Meat	Liquid	ness	ness	ture			
	PSOAS MAJ	OR AND	PSOAS M	INOR MUS	CLES (con	tinued)				
Lactic	acid inje	etion								
Control	samples									
VI	169	8.7	7.3	6.3	9.0	7.0	8.7			
VII	194	8.3	8.3	7.3	9.0	7.3	7.3			
VIII	216	7.7	8.3	6.7	8.7	7.0	7.3			
Av. (3	animals)	8.2	8.0	6.8	8.9	7.1	7.8			
IX	241	7.7	7.7	5.3	9.0	5.7	7.7			
x	266	5.0	3.3	2.7	9.0	4.3	5.0			
Av. (5	animals)	7.5	7.0	5.7	8.9	6.3	7.2			
Inject	d semples									
VT	169	8.3	7.7	7.0	8.7	7.3	8.3			
VTT	194	8.0	7.0	6.3	7.7	6.3	6.7			
VIII	216	8.0	8.0	6.7	8.3	6.3	6.7			
Av. (3	animals)	8.1	7.6	6.7	8.2	6.6	7.2			
IX	241	7.3	7.3	5.3	8.3	5.7	7.0			
x	266	6.3	4.7	3.0	9.0	4.7	6.0			
Av. (5	animals)	7.6	6.9	5.7	8.4	6.1	6.9			

Table 1 (continued)

Antmal	↑ Formo9	Palatability scores							
no.	no.	Aroma	Fla Meat	vor Liquid	Tender- ness	Juici- ness	Tex- ture		
	PSOAS MAS	FOR AND	PSOAS MI	NOR MUS	CLES (con	tinued)			
Sodium	<u>chloride</u>	and lac	tic acid	inject	ion				
Control	l samples		ана стала стал Стала стала стал Стала стала стал						
VI	170	8.3	7.7	7.3	8.7	6.7	8.0		
VII	192	8.0	7.7	7.0	8.0	7.3	7.3		
VIII	217	7.7	8.0	6.3	8.7	6.7	7.0		
Av. (3	animals)	8.0	7.8	6.9	8.5	6.9	7.4		
IX	242	7.3	7.3	5.7	9.3	5.7	7.7		
Х	264	6.3	4.0	3.0	8.7	4.3	5.3		
Av. (5	animals)	7.5	6.9	5.9	8.7	6.1	7.1		
Injecto	d samples		, 2, , , , , , , , , , , , , , , , , ,						
VT	170	8.3	9.0	7.7	9.7	8.3	9.3		
VII	192	8.0	8.7	8.0	9.7	7.3	8.0		
VIII	217	8.7	8.7	8.3	9.7	7.7	8.7		
Av. (3	animals)	8.3	8.8	8.0	9.7	7.8	8.7		
IX	242	7.7	8.3	7.0	9.7	6.3	8.0		
X	264	6.7	5.3	4.7	9.3	5.0	6.7		
Av. (5	animals)	7.9	8.0	7.1	9.6	6.9	8.1		

Table	1	(continued)	

		×	Palatability scores								
Animal no.	Sample	Aroma	F1	avor	Tender-	Juici-	Tex-				
			Meat	Liquid	ness	ness	ture				
а ж	м н н н н н н н н	SEMIT	PENDIN	IOSUS MUS	CLE		ι				
Sodium	<u>chloride</u>	injection	1	97. 2019	3 						
Contro	l samples	,		: 1	л		- *				
VI	172	8.3	7.7	6.7	8.3	6.0	6.3				
VII	197	8.3	7.7	6.0	8.0	6.0	6.3				
VIII	219	7.7	7.7	5.7	7. 7	6.7	6.7				
Av. (3	animals)	8.1	7.7	6.1	8.0	6.2	6.4				
IX	244	8.3	7.7	5.7	7.7	4.3	6.0				
X	269	6.0	5.3	4.3	7.7	4.3	5.0				
Av. (5	animals)	7.7	7.2	5.7	7.9	5.5	6.1				
		- - -	1.0								
Injecto	ed sample	5. 5.			v						
VI	172	8.3	8.3	7.0	8.7	7.0	8.0				
VII	197	8.3	8.7	7.7	9.3	7.3	8.0				
VIII	219	8.0	8.0	7.0		6.7	7.3				
Av. (3	animals)	8.2	8.3	7.2	8.6	7.0	7.8				
IX	244	7.7	8.0	7.3	9.3	4.3	7.3				
X	269	6.3	6.0	5.7	8.7	5.3	6.3				
Av. (5	animals)	7.7	7.8	6.9	8.7	6.1	7.4				
1. State 1.											

Table 1 (continued)

Animal	Semnle	Palatability scores							
no.	no.	Aroma	F1 Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture		
in in the data and the									
	SE	MITENDI	NOSUS M	USCLE (c	ontinued)				
Lactic	acid inje	<u>ction</u>	ар 	 	ander og som en som En som en som				
Control	samples		artina Artina Artina	an a					
VI	173	8.0	8.0	6.0	8.7	7.3	7.7		
VII VIII	195 220	7.7	7.7	6.3	7.7	6.3	6.7		
Av. (3	animals)	7.8	7.9	6.4	8.1	6.8	7.0		
IX	245	7.7	7.7	6.0	8.3	6.0	7.7		
X	267	6.3	5.3	4.3	6.7	5.0	4.3		
Av. (5	animals)	7.5	7.3	5.9	7.9	6.3	6.6		
			н 1919 - 19 19						
Injecte	d samples			2					
VI	173	8.3	8.0	6.3	7.7	7.3	7.7		
VII VIII	195	8.0	7.3	5.7	8.0	5.7 6.3	6.0 6.7		
Av. (3	animals)	8.1	7.7	6.1	7.9	6.4	6.8		
IX	245	7.7	7.7	5.7	7.7	5.7	6.3		
X	267	6.0	5.7	4.7	7.0	4.7	5.7		
Av. (5	animals)	7.6	7.3	5.7	7.7	5.9	6.5		

A A A	M	Palatability scores							
no.	sampie no.	Aroma	Fla Meat	vor Liquid	Tender- ness	Juici- ness	Tex- ture		
	SI	Emi ten dii	NOSUS MU	SCLE (c	ontinued)	 	å		
Sodium	<u>chloride</u>	and lact	tic acid	inject	ion				
Contro	L samples					•			
VI VII VIII	171 196 221	7.7 8.0 7.7	7.3 8.0 8.0	6.0 6.3 6.0	7.7 7.7 7.3	6.0 6.0 6.3	6.7 6.3 6.7		
Av. (3	animals)	7.8	7.8	6.1	7.6	6.1	6.6		
IX	243	7.7	8.0	6.0	7.3	5.0	5.7		
x	268	6.3	5.3	4.7	7.7	5.0	5.7		
Av. (5	animals)	7.5	7.3	5.8	7.5	5.7	6.2		
Inject	ed sample:	3							
VI VII VIII	171 196 221	8.3 8.0 8.0	7.7 8.7 8.3	7.3 7.7 7.3	8.3 9.3 8.0	7.3 6.7 7.7	7.7 7.7 8.3		
Av. (3	animals)	8.1	8.2	7.4	8.5	7.2	7.9		
IX	243	7.7	8.3	7.0	9.0	4.3	7.7		
X	268	6.0	6.0	6.0	9.3	5.3	6.3		
Av. (5	animals)	7.6	7.8	7.1	8.8	6 .3	7.5		
			(conti	nued)					

- 160 -

Table 1 (continued)

A		Palatability scores							
no.	no.	Aroma	Fl Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture		
9	-	SEMI	MEMBRA	NOSUS MU	ISCLE				
Sodium ch]	oride	injectio	m	• * * *					
Control sa	mples						P		
VI CAR	177 179	7.3 7.3	7.3 7.0	5.3 7.3	5.7 7.3	5.0 4.7	4.0 5.0		
Av.		7.3	7.2	6.3	6.5	4.8	4.5		
VII	199 200	7.7 7.7	7.0 7.3	6.7 6.3	6.3 7.0	5.0 6.7	5.0 6.0		
Av.	•	7.7	7.2	6.5	6.6	5.8	5.5		
VIII	222 226	7.3 7.3	7.3 7.3	6 .3 6 . 7	7.3 8.3	4.75.0	5.7 6.3		
Av.		7.3	7.3	6.5	7.8	4.8	6.0		
Av. (3 ani	imals)	7.4	7.2	6.4	7.0	5.1	5.3		
IX	249 251	6.7 7.3	7.3. 6.7	5.7 6.0	6.7 7.0	4.7 3.3	4.0 4.7		
Av.		7.0	7.0	5.8	6.8	4.0	4.4		
X	271 272	7.0 6.7	5.7 5.3	4.7 4.7	6.0 6.7	4.3 4.3	3.7 5.0		
Av.		6.8	5.5	4.7	6.4	4.3	4.4		
Av. (5 and	Lmals)	7.2	6.8	6.0	6.8	4.7	5.0		
			(cont	inued)					

Table	1	(continued)
-------	---	------------	---

And the T	0.emm.l.o		Palatability scores							
no.	no.	Aroma	F. Meat	lavor Liquid	Tender- ness	Juici- ness	Tex- ture			
	SI	EMIMEMBRAN	osus	MUSCLE	(continued)				
Sodium	chloride	injection	(00)	tinued)	2 2					
Injecte	ed samples	3. 3.		n - C Constantino Constantino	С : -	3,				
VI	177 179	7.3 7.7	8.0	6.7 6.3	7.3 7.0	6.3 6.0	6.7 5.0			
Av,	а Л	7.5	7.6	6.5	7.2	6.2	5.8			
VII	199 200	7.7	8.0 8.7	7.3	8.3	5.3 6.3	7.0 8.0			
Av.		7.8	8.4	7.3	8.6	5.8	7.5			
VIII	222 226	8.0 7.7	7.7	7.0 7.3	8.7 8.0	6.3 6.0	6.7 6.7			
• • • Av	а р б.	7.8	8.0	7.2	8.4	6.2	6.7			
Av. (3	animals)	7.7	8.0	7.0	8.1	6.1	6.7			
IX	249 251	7.0	7.7	7.0 7.3	7.3	4.0 3.3	4.7			
Av	•	7.5	7.8	7.2	7.8	3.6	5.0			
x	271 272	7.0 6.7	6.3 6.7	6.3 6.0	8.0 8.7	5.7 4.3	5.3 5.7			
AV	а. В стал	6.8	6.5	6.2	8.4	5.0	5.5			
Av. (5	animals)	7.5	7.7	6.9	8.1	5.4	6.1			

Table 1 (continued)

Amamal	ec.mole	Palatability scores								
no.	Sampie	Aroma	P.	lavor	Tender-	Juici-	Tex-			
			Meat	Liquid	ness	ness	ture			
	SE	MIMEMBR	ANOSUS	MUSCLE	(continued	1)				
Lactic s	acid inje	ction	e se ante de la composición de la compo la composición de la compo		. *					
Control	samples									
VI	175	7.3	7.3	6.0	6.7	5.3	4.0			
	176	7.7	6.7	6.3	7.7	3.7	5.7			
Av.		7.5	7.0	6.2	7.2	4.5	4.8			
VTT	198	7.7	6.7	6.3	6.7	5.0	5.7			
	202	7.3	7.7	7.0	6.3	6.0	5.0			
Av.		7.5	7.2	6.6	6.5	5.5	5.4			
VIII	225	7.7	7.0	6.3	6.3	5.0	4.0			
	227	7.3	7.3	5.7	5.7	4.3	4.3			
Av.		7.5	7.2	6.0	6.0	4.6	4.2			
Av. (3 a	animals)	7.5	7.1	6.3	6.6	4.9	4.8			
IX	247	7.0	7.0	5.3	8.0	2.7	4.7			
	248	7.3	6.3	5.7	7.7	3.0	4.7			
Av.		7.2	6.5	5.5	7.8	2.8	4.7			
X	270	6.7	6.0	5.0	7.3	4.0	4.0			
	274	7.0	6.0	4.3	7.3	4.3	4.7			
Av.		6.8	6.0	4.6	7.3	4.2	4.4			
Av. (5 a	animals)	7.3	6.8	5.8	7.0	4.3	4.7			

Table 1 (continued)

Animal	Samole	Palatability scores							
no.	no.	Aroma	Fla Meat	vor Liquid	Tender- ness	Juici- ness	Tex-		
	SE	MIMEMBRA	NOSUS M	USCLE (continued	1)			
Lactic a	<u>cid</u> inje	<u>etion</u> (c	ontinue	đ)	2 1				
Injected	samples					• •			
VI	175 176	7.7 7.7	7.3 7.7	7.0 6.0	7.7 7.3	4.0	5.0 5.7		
Av.		7.7	7.5	6.5	7.5	4.6	5.4		
VII	198 202	8.0 7.7	7.3 8.0	7.0 6.7	7.3 7.7	5.0 7.0	6.0 7.0		
Av.	2 A A A A A A A A A A A A A A A A A A A	7.8	7.6	6.8	7.5	6.0	6.5		
VIII	225 227	7.3	7.0 7.3	6.0 6.0	5.3 6.7	6.3 3.3	4.0 4.7		
Av.	- · ·	7.5	7.2	6.0	6.0	4.8	4.4		
Av. (3 a	nimals)	7.7	7.4	6.4	7.0	5.1	5.4		
IX	247 248	7.0 7.3	6.7 7.0	5.0 5.7	8.0 7.0	3.0 3.3	4.3 5.0		
Av.		7.2	6.8	5.4	7.5	3.2	4.6		
x	270 274	6.7 6.3	5.7 5.7	5.0 5.0	7.7 6.7	5.0 5.0	5.0 4.7		
Av.		6.5	5.7	5.0	7.2	5.0	4.8		
Av. (5 a	nimals)	7.3	7.0	5.9	7.1	4.7	5.1		
			(conti	nued)					

Table 1 (continued)

Antwol Course	Palatability scores								
no. no.	Aroma	F]	avor Lignid	Tender-	Juici-	Tex-			
and a second s		271. 00 56 50	4.4.5 g 64.4.54	110 86	11008				
SI	EMIMEMBR.	ANOSUS	MUSCLE (continued	I)				
Sodium chloride	and lac	tic aci	d inject	ion					
Control samples	a.			к					
VI 174 178	7.7	7.7	6.3 6.7	7.3 6.0	5.3 3.7	4.7 3.7			
Av.	7.7	7.4	6.5	6.6	4.5	4.2			
VII 201 203	7.7 8.0	6.7 8.0	6.7 6.3	6.0 8.3	4.7	5.0 6.3			
Av.	7.8	7.4	6.5	7.2	5.2	5.6			
VIII 223 224	7.3	7.0	7.7 6.3	6.0 5.3	5.0 5.3	4.7 4.3			
Áv.	7.3	7.2	7.0	5.6	5.2	4.5			
Av. (3 animals)	7.6	7.3	6.7	6.5	5.0	4.8			
IX 246 250	7.3 7.7	6.7	5.7	6.7 7.7	3.0 3.0	4.0 5.0			
Av.	7.5	6.5	5.5	7.2	3.0	4.5			
X 273 275	7.0 6.3	5.7 5.7	5.0 4.0	6.3 7.7	3.7	4.0 4.7			
Av.	6.6	5.7	4.5	7.0	4.4	4.4			
Av. (5 animals)	7.4	6.8	6.0	6.7	4.5	4.6			
		(cont	inued)	,					

Table 1 (continued)

Andwo 7	Gample			Palatabi	lity scor	es	
no.	no.	Aroma	Fl Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture
	SE	MIMEMBR	ANOSUS	MUSCLE (continued	1)	
Sodium c	hloride	and lac	tic aci	<u>d</u> inject	ion (cont	inued)	
Injected	samples	1	*		•		
VI	174 178	7.7 7.3	8.0 7.7	7.7	8.3 7.0	6.3 5.0	7.0 5.7
Av.		7.5	7.8	7.7	7.6	5.6	6.4
VII	201 203	8.0 7.7	8.3 8.0	8.0 7.0	8.3 8.7	6.7 6.7	7.3 7.7
Av.		7.8	8.2	7.5	8.5	6.7	7.5
VIII	223 224	7.7 8.0	8.0 8.3	6.0 8.0	7.7 7.7	5.7 5.3	6.3 6.7
Av.		7.8	8.2	7.0	7.7	5.5	6.5
Av. (3 s	inimals)	7.7	8.1	7.4	7.9	5.9	6.8
IX	246 250	7.3	7.7 8.0	7.3	8.0 9.0	4.7 4.7	6.0 6.7
Av.		7.5	7.8	7.3	8.5	4.7	6.4
X	273 275	7.0 6.7	6.3 6.7	6.0 6.0	8.7 8.7	5.0 4.0	6.0 5.3
Av.		6.8	6.5	6.0	8.7	4.5	5.6
Av. (5 s	animals)	7.5	7.7	7.1	8.2	5.4	6.5

Table 1 (continued)

		Palatability scores								
Animal no.	Sample no.	Aroma	F1 Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture			
ing and a second se Second second second Second second	· · · · · · · · · · · · · · · · · · ·	BI	CEPS FE	MORIS MU	ISCLE					
Sodium	chloride	injecti	on							
Control	samples									
VI	184 185	8.0 8.0	8.0 6.7	6.0 6.3	8.3 7.7	7.0 6.3	8.0 6.0			
Av.	. <u>.</u> .	8.0	7.4	6.2	8.0	6.6	7.0			
VII	205 207	8.3	7.3 8.0	6.3 6.7	7.7 7.3	6.3 6.0	6.3 6.3			
Av.	• •***	8.0	7.6	6.5	7.5	6.2	6.3			
VIII	228 230	7.7 8.0	7.7 7.0	6.3	8.0	7.7 4.7	5.7 4.7			
Av.		7.8	7.4	6.3	7.4	6.2	5.2			
Av. (3	animals)	7.9	7.5	6.3	7.6	6.3	6.2			
IX	25 6 257	7.3	6.3 6.7	5.3 5.7	7.3 8.7	4.0 3.0	4.7 6.0			
Av.		7.3	6.5	5.5	8.0	3.5	5.4			
X	277 279	5.7 6.7	3.3	3.3	6.7 8.3	3.7 5.0	3.3 6.0			
Av.		6.2	3.5	3.5	7.5	4.4	4.6			
Av. (5	animals)	7.5	6.5	5.6	7.7	5.4	5.7			

Table 1 (continued)

Andmal	Comple	r	Palatability scores							
no.	no.	Aroma	F] Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture			
•		BICEPS FE	MORIS	MUSCLE	(continued)				
Sodium	<u>chloride</u>	injectio	n (con	tinued)	.4					
Injecte	ed sample	S								
VI	184 185	7.7 7.7	7.7 7.7	8.0 7.3	6.3 8.7	7.3 7.0	6.3 7.7			
Av.	a	7.7	7.7	7.6	7.5	7.2	7.0			
VII	205 207	7.7 7.7	8.0	8.0 7.3	8.3 9.3	6.0 7.0	7.3 8.0			
Av.	• • • • • • • • • • • • • • • • • • •	7.7	8.2	7.6	8.8	6.5	7.6			
VIII	228 230	8.0	8.0 7.7	7.0	9.0 8.7	7.3 6.3	8.3 7.3			
Av.	•	7.8	7.8	7.2	8.8	6.8	7.8			
Av. (3	animals)	7.7	7.9	7.5	8.4	6.8	7.5			
IX	25 6 257	7.0 7.3	7.7	7.0 7.0	8.0 9.0	4.7 3.7	6.0 7.0			
Av.	н н	7.2	7.5	7.0	8.5	4.2	6,5			
X	2 77 279	6.0 7.3	4.3 4.3	5.7 5.7	7.7 8.7	4.3	5.7			
AV	●	6.6	4.3	5.7	8.2	5.2	6.0			
Av. (5	animals)	7.4	7.1	7.0	8.4	6.0	7.0			

Table 1 (continued)

Andmal	Comple		Palatability scores								
no.	no.	Aroma	F. Meat	lavor Liquid	Tender- ness	Juici- nes s	Tex- ture				
· · · · · · · · · · · · · · · · · · ·		BICEPS	FEMORIS	MUSCLE	(continued	1)	•				
Lactic a	acid inj	ection									
Control	samples										
VI	181 183	8.0 7.7	7.7 7.0	6.3 6.7	8.3 7.3	6.3 6.7	7.7 6.7				
Av.		7.8	7.4	6.5	7.8	6.5	7.2				
VII	204 20 6	8.0 7.7	7.3 8.0	6.0 7.3	8.7	6.7 6.0	6.7 6.7				
Av.		7.8	7.6	6.6	8.4	6.4	6.7				
VIII	232 233	8.3 7.3	7.3 7.3	6.0 6.3	7.0 7.7	5.3 5.3	6.3 5.7				
Av.		7.8	7.3	6.2	7.4	5.3	6.0				
Av. (3 a	anim als)	7.8	7.4	6.4	7.9	6.1	6.6				
IX	253 255	7.0 7.0	7.3 7.0	5.3 5.3	8.3 7.3	6.0 3.3	6.3 4.3				
Av.		7.0	7.2	5.3	7.8	4.6	5.3				
Х	276 278	5.0 6.3	$3.7 \\ 4.3$	5.0 3.0	7.07.3	3.3 3.7	4.0 5.0				
Av.		5.6	4.0	4.0	7.2	3.5	4.5				
Av. (5	animals)	7.2	6.7	5.7	7.7	5.3	5.9				
			(con	tinued)							

Table 1 (continued)

Amimal	amola	Palatability scores							
no.	no.	Aroma	Fl Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture		
	В	ICEPS FI	MORIS	MUSCLE (continued	ана на на 1947 — Прила Пара Это на на на на 1947 — Прила Пара на на на 1947 — Прила Пара на на 1947 — Прила На	,		
Lactic act	d inje	ction (c	ontinu	ed)					
Injected a	amples	с. 1999 - Эл			and the second sec	ş			
VI	181 183	7.7 8.0	7.3 7.0	6.7 6.3	8.7 8.0	7.0 5.7	7.7		
Av.	: 	7.8	7.2	6.5	8.4	6.4	7.2		
VII	204 206	8.0 7.7	8.0 8.0	7.3	8.7 8.3	7.7	7.0 7.3		
Av.	7 5 -	7.8	8.0	7.2	8.5	7.0	7.2		
VIII	232 233	8.3 7.3	7.7	6.3 5.7	7.0	6.3 5.7	6.0 6.3		
Av.	. *	7.8	7.7	6.0	7.4	6.0	6.2		
Av. (3 and	imals)	7.8	7.6	6.6	8.1	6.5	6.9		
IX	253 255	7.7	7.3	5.3	8.3 7.0	4.3 2.7	6.0 5.0		
Av.		7.4	6.8	5.5	7.6	3.5	5.5		
x	2 76 278	5.7	3.7 4.0	4.3 5.0	7.0	4.3	4.0 5.0		
Av.		6.4	3.8	4.6	7.4	4.8	4.5		
Av. (5 and	mals)	7.4	6.7	6.0	7.9	5.5	6.1		
			(cont	inued)					

Table 1 (continued)

And	Sample no.	Palatability scores							
no.		Aroma	F. Meat	lavor Liquid	Tender- ness	Juici- ness	Tex- ture		
	н. н.	BICEPS I	FEMORIS	MUSCLE	(continued)			
Sodium c	hloride	and lac	otic act	d injec	tion				
Control	samples								
VI	180 182	7.7 8.0	8.0 7.3	7.0 7.0	9.0 9.0	7.7 7.0	8.3 7.0		
Av.	e e	7.8	7.6	7.0	9.0	7.4	7.6		
VII	208 209	7.7 8.3	7.3 8.0	6.7 6.3	7.0 8.3	7.3 6.3	6.3 6.3		
Av.	• •	8.0	7.6	6.5	7.6	6.8	6.3		
VIII	229 231	7.7 7.7	8.0	6.3 5.7	8.3 7.3	7.0 5.7	7.0 5.7		
Av.	ů	7.7	7.5	6.0	7.8	6.4	6.4		
Av. (3 a	nimals)	7.8	7.6	6.5	8.1	6.9	6.8		
IX	252 254	6.7 7.7	6.7 7.0	6.0 5.0	9.3 8.0	4.3 5.7	6.3 5.7		
Av.		7.2	6.8	5.5	8.6	5.0	6.0		
X	280 281	5.3	4.3 4.0	3.7 4.0	8.0	3.0 4.7	5.0		
Av.		6.0	4.2	3.8	8.4	3.8	5.5		
Av. (5 a	nimals)	7.3	6.7	5.8	8.3	5.9	6.4		

,

Table 1 (continued)

Antmal . Comple	Palatability scores							
no. no.	Aroma	F1 Meat	avor Liquid	Tender- ness	Juici- ness	Tex- ture		
	BICEPS FE	MORIS	MUSCLE (continued	1)			
Sodium chloride	and lact	ic aci	d inject	1on (cont	inued)			
Injected sample	8		2 - 12 - 8					
VI 180 182	8.0	7.7 8.0	7.0	9.0 8.7	7.3 7.3	8.3 8.0		
Av.	8.0	7.8	7.4	8.8	7.3	8.2		
VII 208 209	7.7 8.3	8.0	7.7	8.0 8.7	7.0 6.7	7.7 7.3		
Av.	8.0	7.8	7.7	8.4	6.8	7.5		
VIII 229 231	7.7 8.0	7.7 8.3	8.0 7.3	9.0	6.0 6.3	7.7 7.7		
A v.	7.8	8.0	7.6	9.0	6.2	7.7		
Av. (3 animals)	7.9	7.9	7.6	8.7	6.8	7.8		
IX 252 254	7.0 7.3	8.0 8.0	7+0 7+0	9.7 9.0	4.7 5.7	7.0 7.0		
Av.	7.2	8.0	7.0	9.4	5.2	7.0		
X 280 281	5.7 7.0	5.3 4.3	5.7 4.7	8.3	4.7 6.0	5.7 6.3		
Av.	6.4	4.8	5.2	8.5	5.4	6.0		
Av. (5 animals)	7.5	7.3	7.0	8.8	6.2	7.3		

.

.

.
Table 2. Slicing Quality of Canned Beef. The number of slices obtained grouped according to muscle used and processing time.

Animal*	Sample	No. s. obta	lices Lned	Possible no.		Slices obtained	
	110.	Firm C	cumbly	slices	Firm	Crumbly	Total
· .		1.2 J. 1		ž	%	%	ħ
	LONG	ISSIMUS	DORSI	MUSCLE, LO	IN POR	TION	
Sodium	<u>chloride</u>	injecti	Lon				
Control	. samples			n An Anna Anna Anna An Anna Anna Anna An			
VI	162	4	4	10	40.0	40.0	80.0
VII	188	0	3	11	0	27.3	27.3
VIII	211	0	7	12	0	58.3	58.3
Av. (3	animals)	1.3	4.7	11.0	13.3	41.9	55.2
IX	234	0	3	11	0	27.3	27.3
Х	260	0	6	11	0	54.5	54.5
Av. (5	animals)	0.8	4.6	11.0	8.0	41.5	49.5
·:	. 9 . •	٥ 	- 	: , ·			
Injecte	d sample	S	- · ·	11 4 10 485 1		~~ ~	
VI	162	5	3	11	45.4	27.3	72.7
VII	188	. 0	4	10	0	30.8	30.8
VIII	211	U	2	TQ	0	10.4	10+4
Av. (3	animals)	1.7	3.0	12.3	15.1	24.5	39 .6
IX	234	0	0	11	0	0	0
X	260	8	1	12	66.7	8.3	75.0
Av. (5	animals)	2.6	2.0	12.0	22.4	16.4	38.8

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

Table 2 (continued)

Animal Sample no. no.		No. s. obta:	lices Ined cumbly	Possible no.	FI I PM	Slices obtained Crumbly	Total	
	en 1997 - En 2000 - E	LLLIN U.			<u>%</u>	%	%	
L	ONGISSIMUS	DORSI	MUSCLE,	LOIN POF	TION	(continued)		
Lactic	acid inje	ction						
Contro	l samples				4			
VT	164	6	4	11	54.5	36.4	90.9	
VII	187	ō	ō	13	0	0	0	
VIII	210	0	õ	12	0	0	0	
Av. (3	animals)	2.0	1.3	12.0	18.2	12.1	30.3	
IX	236	0	2	11	0	18.2	18.2	
X	259	0	0	11	0	O	0	
Av. (5	animals)	1.2	1.2	11.6	10.9	10.9	21.8	
Inject	ed samples							
17.7	164	6	A	19	50.0	33.3	83.3	
T V T T V	197	õ	3	17	0	27.3	27.3	
VIII	210	7	2	12	58.3	16.7	75.0	
Av. (3	animals)	4.3	3.0	11.7	36.1	25.8	61.9	
IX	236	0	2	12	0	16.7	16.7	
x	259	4	3	11	36.4	27.3	63.7	
Av. (5	animals)	3.4	2.8	11.6	28.9	24.3	53,2	

Animal no.	Sample no.	No. sl obtai	ices ned	Possible no.	E4 your	Slices obtained	Total
	artelyn yw artenn ar ar bran y bran yw annar 1	FILM OF	unory	STICOD		%	-100a1 %
1	LONGISSIM	US DORSI	MUSCLE	, LOIN PC	RTION	(continued)
Sodium	<u>chloride</u>	and lac	tic aci	d <u>inject</u> i	on		
Control	L samples						
VI	163	0	7	11	0	63.6	63.6
VII	186	2	6.	11	18.2	54.5	72.7
VIII	212	0	5	13	0	38.5	38.5
Av. (3	animals)	0.7	6.0	11.7	6.1	52.2	58 .3
IX	235	0	0	10	0	0	0
x	258	7	1	11	63.6	9.1	72.7
Av. (5	enimals)	1.8	3.8	11.2	16.4	33.1	49.5
Inject	od sample:	S .					
VT	163	8	2	12	66.7	16.7	83.4
VII	186	2	2	12	16.7	16.7	33.4
VIII	212	2	7	12	16.7	58.3	75.0
Av. (3	animals)	4.0	3.7	12.0	33.4	30.6	63.9
IX	235	0	0	12	0	O	0
X	258	2	6	11	18.2	54.5	72.7
Av. (5	animals)	2.8	3.4	11.8	23.7	29.2	52.9

Table 2 (continued)

Animal no.	Sample no.	No. sl obtai Firm Cr	ices ned umbly	Possible no. slices	Firm	Slices obtained Crumbly	Total
*****		19 19			%	%	%
к., к	LON	GISSIMUS	DORSI	MUSCLE,	RIB POR	TI ON	
Sodium	chloride	<u>injecti</u>	on				
Control	l samples			ų.			
VI VII VIII	167 189 214	10 2 8	0 5 1	10 10 11	100.0 20.0 72.7	0 50.0 9.1	100.0 70.0 81.8
Av. (3	animals)	6.7	2.0	10.3	64.2	19.7	83.9
IX	239	8	1	10	80.0	10.0	90.0
X	261	2	5	10	20.0	50.0	70.0
Av. (5	animals)	6.0	2.4	10.2	58.5	23.8	82.4
Thiecte	ad sample	5		e e	ж		
VI VII VIII	167 189 214	9 3 1	0 2 7	10 10 10	90.0 30.0 10.0	0 20.0 70.0	90.0 50.0 80.0
Av. (3	animals)	4.3	3.0	10.0	43.3	30.0	73.3
IX	239	3	3	10	30.0	30.0	60.0
х	261	0	7	10	0	70.0	70.0
Av. (5	animals)	3.2	3.8	10.0	32.0	38.0	70.0

Animal	Sample	No. sl obtaj	ices ned	Possible no.		Slices obtained	
no.	no.	Firm Cr	umbly	slices	Firm	Crumbly	Total
				na na manda da sa kana kana kana kana kana kana kana	%	%	%
]	LONGISSIM	US DORSI	MUSCL	E, RIB POR	TION (continued)
Lactic	acid inj	ection		۰۰۰ میں ۱۹۰۰ میں ۱۹۰۰ ۱۹۰۰ م			1.9 1. 19
Control	l samples	٤					
VI	165	». 1	7	11	9.1	63.6	72.7
VII	190	7	4	11	63.6	36.4	100.0
VIII	215	5	4	10	50.0	40.0	90.0
Av. (3	animals)	4.3	5.0	10.7	40.9	46.7	87.6
IX	237	5	4	11	45.4	36.4	81.8
x	262	6	2	10	60.0	20.0	80.0
Av. (5	animals)	4.8	4.2	10.6	45.6	39.3	84.9
Injecto	ed sample	8					
VT	165	0	4	10	0	40.0	40.0
VII	190	· 9	2	11	81.8	18.2	100.0
VIII	215	9	2	11	81.8	18.2	100.0
Av. (3	animals)	6.0	2.7	10.7	54.5	25.5	80.0
IX	237	6	2	11	54.5	18.2	72.7
х	262	7	1	9	77.8	11.1	88.9
Av. (5	animals)	6.2	2.2	10.4	59.2	21.1	80.3

Animal no.	Sample no.	No. sl obtai Firm Cr	ices F ned umbly	ossible no. slices	Firm	Slices obtained Crumbly	Total
	n de Mâneren en Bernard an Andrea de Services de Services de Services de Services de Services de Services de S Services de Services de Serv			***************************************	%	%	%
1	LONGISSIM	US DORSI	MUSCLE,	RIB POP	RTION (continued)	
Sodium	chloride	and lac	tic acid	injecti	on	• • •	¢
Control	l samples					· •	
VI VII VIII	166 191 213	0 9 2	5 1 7	10 11 10	0 81.8 20.0	50.0 9.1 70.0	50 .0 90.9 90.0
Av. (3	animals)	3.7	4.3	10.3	33.9	43.0	77.0
IX	238	0	2	10	0	20.0	20.0
X	263		1	12	Ø	8.3	8.3
Av. (5	animals)	2.2	3.2	10.6	20.4	31.5	51.8
Injecte	ed sample:	8					
VI VII VIII	166 191 213	0 1 2	8 8 7	10 10 10	0 10.0 20.0	80.0 80.0 70.0	80.0 90.0 90.0
Av. (3	animals)	1.0	7.7	10.0	10.0	76 .7	86.7
IX	238	0	2	10	0	20.0	20.0
x	263	6	1	10	60.0	10.0	70.0
Av. (5	animals)	1.8	5.2	10.0	18.0	52.0	70.0

Table 2 (continued)

Animal no.	Sample no.	No. s. obta: Firm Cr	lices ined rumbly	Possible no. slices	F1rm	Slices obtained Crumbly	Total
antides and gard printing of the second s				Marina a constante de la constante de la constante E	%	%	K
	PS	OAS MAJ	OR AND	PSOAS MINC)R MUSC	LES	
Sodium	<u>chloride</u>	inject	on	1 - 4 	a - 2		
Control	samples						
VI	168	2	8	10	20.0	80.0	100.0
VII	193	0	6	11	0	54.5	54.5
VIII	ST8	4	Ð	14	00.4	40,4	81.6
Av. (3	animals)	2.0	6.3	10.7	18.8	60.0	78.8
IX	240	0	6	13	0	46.2	46.2
X	265	0	9	12	0	75.0	75.0
Av. (5	animals)	1.2	6.8	11.4	11.3	60.2	71.5
	f	ж м	4 1	, 49 			۰ ,
Injecte	d sample.	3 • •					
VI	168	° 0	7	10	0	70,0	70.0
VII	193	0	2	10	0	20.0	20.0
VIII	218	1	3	11	9.1	27.3	36.4
Av. (3	animals)	0.3	4.0	10.3	3.0	39.1	42.1
IX	240	0	0	11	0	ο	0
X	265	8	2	12	66.7	16.7	83.4
Av. (5	animals)	1.8	2.8	10.8	15.2	26.8	42.0

Table 2 (continued)

Animal	Sample	No. sl obtai	ices ned	Possible no.		Slices obtained	
no.	no.	Firm Cr	umbly	slices	Firm	Crumbly	Total
			na na han ann an	anders in standig and an and a stand and an an a	%	%	%
	PSOAS MA	JOR AND	PSOAS	MINOR MUSC	LES (c	ontinued)	
Lactic	acid inj	ection					
Control	. samples		41 4 1 4 1 4	арана (тр. 1994) С			
VI	169	3	7	10	30.0	70.0	100.0
VII	194	0	6	10	0	60.0	60.0
VIII	216	1	4	12	8.3	33.3	41.6
Av. (3	animals)	1.3	5.7	10.7	12.8	54.4	67.2
IX	241	· • • •	3	11	0	27.3	27.3
X	266	7	2	12	58.3	16.7	75.0
Av. (5	animals)	2.2	4.4	11.0	19.3	41.5	60.8
		· · · · ·		· · ·			
Injecte	d sample	8	· . ·				
VT	169	<u> </u>	8	10	0	80.0	80.0
VII	194	ŏ	ī	īo	0	10.0	10.0
VIII	216	0	2	11	0	18.2	18.2
Av. (3	animals)	0	3.7	10.3	0	36.1	36.1
IX	241	0	8	9	0	22.2	22.2
x	266	5	4	11	45.4	36.4	81.8
Av. (5	animals)	1.0	3.4	10.2	9.1	33.4	42.4

- 181 -

,

Table 2 (continued)

æ

er al

Animal no.	Sample no.	No. sl obta	ices	Possible no.		Slices obtained	
		Firm Ci	rumbly	slices	Firm	Crumbly	Total
					%	%	%
	PSOAS MA	JOR AND	PSOAS	MINOR MUSC	LES (c	ontinued)	
Sodium	chloride	and lac	tic ac	id injecti	on		4
Control	samples	, · · · ·		ii			
VI	170	3	6	10	30.0	60.0	90.0
VII	192	0	3	11	0	27.3	27.3
VIII	217	0	7	12	0	58.3	58.3
Av. (3	animals)	1.0	5.3	11.0	10.0	48.5	58.5
IX	242	2	3	· 9	22.2	33.3	55.5
x	264	. 0	4	12	0	33.3	33.3
Av. (5	animals)	1.0	4.6	10.8	10.4	42.4	52.9
Injecte	d sample	S	•				
VT	170	• • •	8	10	0	80.0	80.0
VTT	192	ŏ	-2	10	ŏ	20.0	20.0
VIII	217	1	5	10	10.0	50.0	60.0
Av. (3	animals)	0.3	5.0	10.0	3.3	50.0	53.3
IX	242	0	2	10	0	20.0	20.0
х	264	0	6	11	0	54.5	54.5
Av. (5	animals)	0.2	4.6	10.2	2.0	44.9	46.9

Table	2	(continued))
		$F(\mathbb{T}_{p,p})$ (6)	

Animal no.	Sample no.	No. s. obta:	lices ined	Possible no.		Slices obtained	
		Firm C:	rumbly	slices	Firm	Crumbly	Tota
					%	%	%
		SI	EMI TEND	INOSUS MUS	SCLE		
Sodium	chloride	inject	lon				
Control	samples						
VI	172	8	1	10	80.0	10.0	90.0
VII	197	11	1	12	91.7	8.3	100.0
VIII	219	10	0	10	100.0	0	100.0
Av. (3	animals)	9.7	0.7	10.7	90.6	6.1	96.
IX	244	8	1	10	80.0	10.0	90.0
X	269	11	1	12	91.7	8.3	100.0
Av. (5	animals)	9.6	0.8	10.8	88.7	7.3	96.0
Injecte	d sample:	3					
VI	172	9	0	9	100.0	0	100.0
VII	197	9	3	12	75.0	25.0	100.0
VIII	219	10	0	10	100.0	0	100.0
Av. (3	animals)	9.3	1.0	10.3	91.7	8.3	100.0
IX	244	8	1	9	88.9	11.1	100.0
X	269	11	1	12	91.7	8.3	100.0
Av. (5	animals)	9.4	1.0	10.4	91.1	8.9	100.0
			(con	tinued)			
	•						

Table 2 (continued)

Animal	Sample	No. s obta	lices ined	Possible no.		Slices obtained	
no.	no.	Firm C	rumbly	slices	Firm	Crumbly	Total
			, ,	aland Theorem and a state of the second s	%	16	%
		SEMITEN	DINOSUS	MUSCLE (continu	ed)	
Lactic	acid in	ection					
Control	samples	in in the second se			· · · · ·		,
VI	173	6	0	10	60.0	0	60.0
VII	195	11	0	11	100.0	0	100.0
VIII	220	10	0	10	100.0	0	100.0
Av. (3	animals)	9.0	0	10.3	86.7	0	86.7
IX	245	8	1	10	80.0	10.0	90.0
X	267	12	0	12	100.0	0	100.0
Av. (5	animals	9.4	0.2	10.6	88.0	2.0	90.0
Injecte	d sample	98		- 1			
vt	173	ĥ	0	11	54.5	0	54.5
VIT	195	ğ	ž	11	81.8	18.2	100.0
VIII	220	10	ō	10	100.0	0	100.0
Av. (3	animals	8.3	0.7	10.7	78.8	6.1	84.8
IX	245	7	3	10	70.0	30.0	100.0
x	267	12	0	12	100.0	0	100.0
Av. (5	animals	8.8	1.0	10.8	81.3	9.6	90 .9

-

Table 2 (continued)

Animal	Sample	No. s. obta:	lices Ined	Possible no.		Slices obtained	ļ
110.	110.	Firm Cr	rumbly	slices	Firm	Crumbly	Total
	14004-18-19-14 <u>1-19-14-19-14-19-14-19-14-19-14-19-14</u>	en angjeritete tafan arigentije, menesaas	ay photo a sub-supervised and a sub-supervised and a sub-supervised and a sub-supervised and a sub-supervised a	an fra ann an San Anna an Anna	%	Z	ħ
	· · · · · · · · · · · · · · · · · · ·	SEMITENI	DINOSUS	MUSCLE (continu	led)	
Sodium	<u>chloride</u>	and la	ctic ac	id inject	ion		н. На с
Control	samples			,			
VI	171	9	2	11	81.8	18.2	100.0
VII	196	11	0	11	100.0	0	100.0
VIII	221	10	0	10	100.0	0	100.0
Av. (3	animals)	10.0	0.7	10.7	93.9	6.1	100.0
IX	243	9	1	10	90.0	10.0	100.0
X	268	12	0	12	100.0	0	100.0
Av. (5	animals)	10.2	0.6	10.8	94.4	5.6	100.0
Injecto	ed sample	8					
VT	171	9	1	10	90.0	10.0	100.0
VII	196	10	ō	10	100.0	0	100.0
VIII	221	10	0	10	100.0	0	100.0
Av. (3	animals)	9.7	0.3	10.0	96.7	3.3	100.0
IX	243	6	2	9	66.7	22.2	88.9
X	268	11	1	12	91.7	8.3	100.0
Av. (5	animals)	9.2	0.8	10.2	89.7	8.1	97.8
1			1	and the second			5

Table 2 (continued)

11 10 10.5 12 11 11.5	PIPH % SCLE 18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
SUS MUS 11 10 10.5 12 11 11.5) SCLE 18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
11 10 10.5 12 11 11.5	18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
11 10 10.5 12 11	18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
11 10 10.5 12 11	18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
11 10 10.5 12 11	18.2 0 9.1 0 36.4 18.2	45.4 50.0 47.7 16.7 45.4 31.0	63.6 50.0 56.8 16.7 81.8 49.2
10 10.5 12 11 11.5	0 9.1 0 36.4 18.2	50.0 47.7 16.7 45.4 31.0	50.0 56.8 16.7 81.8 49.2
10.5 12 11 11.5	9.1 0 36.4 18.2	47.7 16.7 45.4 31.0	56.8 16.7 81.8 49.2
12 11 11.5	0 36.4 18.2	16.7 45.4 31.0	16.7 81.8 49.2
11 11.5	36.4 18.2	45.4 31.0	81.8 49.2
11.5	18.2	31.0	49.2
11	0	63.6	63.6
11	18.2	45.4	63.6
11.0	9.1	54.5	63.6
11.0	12.1	44.4	56.5
11	0	27.3	27.3
11	18.2	36.4	54.6
11.0	9.1	31.8	41.0
12	16.7	58.3	75.0
12	58.3	33.3	91.6
	37.5	45.8	83.3
12.0			60 0
	12 12 12.0	12 16.7 12 58.3 12.0 37.5	12 16.7 58.3 12 58.3 33.3 12.0 37.5 45.8 13.2 16.6 42.2

Table 2 (continued)

Sample no.	No. s. obta:	lices ined	Possible no.	Fd am	Slices obtained	Tote
	FILM 01	rumory		r 1 1 m	wind y	106a.
				10	70	<i>p</i>
SI	EMIMEMBI	RANOSUS	MUSCLE (c	ontinu	ed)	
chloride	inject	Lon (co	ntinued)			
d sample:	3		· · · · · · · · · · · · · · · · · · ·			
177	6	4	11	54.5	36.4	90.9
179	0	6	11	0	54.5	54.5
P.	3.0	5.0	11.0	27.2	45.4	72.7
199	4	5	12	33.3	41.7	75.0
200	2	7	10	20.0	70.0	90.0
	3.0	6.0	11.0	26.6	55.8	82.1
222	· · · O ,	8	12	0	66.7	66.'
226	0	3	11	0	27.3	27.3
	° 0	5.5	11.5	0	47.0	47.0
animals)	2.0	5.5	11.2	17.9	49.4	67.4
249	0	0	11	0	0	0
251	0	2	11	0	18.2	18.2
1. S	0	1.0	11.0	0	9.1	9.]
271	5	4	12	41.7	33.3	75.0
272	0	8	11	0	72.7	72.1
	2.5	6.0	11.5	20.8	53.0	73.8
animals)	1.7	4.7	11.2	14.9	42.1	57.0
	Sample no. SI <u>chloride</u> d samples 177 179 200 222 226 animals) 249 251 271 272 271	Sample No. s no. obta pirm C: SEMI MEMBI samples inject: chloride inject: d samples 177 179 0 3.0 3.0 199 4 200 2 3.0 222 0 3.0 222 0 226 0 0 2.0 226 0 0 2.0 2271 0 271 5 272 0 2.5 animals) 1.7 1.7	Sample no. No. slices obtained Firm Crumbly SEMIMEMBRANOSUS chloride injection (co d samples 177 6 179 0 179 0 199 4 200 2 199 4 200 2 199 4 200 2 3.0 5.0 199 4 200 2 3.0 6.0 222 0 8 226 0 5.5 animals) 2.0 249 0 0 1.0 271 5 272 0 8 2.5 6.0 2.5 6.0	Sample No. slices Possible no. $\frac{obtained}{Firm Crumbly}$ no. SEMIMEMBRANOSUS MUSCLE (continued) d samples 177 6 4 11 179 0 6 11 3.0 5.0 11.0 199 4 5 12 200 2 7 10 3.0 5.0 11.0 199 4 5 12 200 2 7 10 3.0 5.0 11.0 222 0 8 12 200 2 7 10 3.0 6.0 11.0 12 226 0 3 11 0 5.5 11.5 11.2 249 0 0 11 0 1.0 11.0 12.0 271 5 4 12 272 0 8 11	Sample no.No. slices obtained Firm CrumblyPossible no.No.Firm CrumblyNo.Firm Crumbly $no.$ SEMIMEMBRANOSUS MUSCLE (continued)chloride chlorideinjection (continued)d samples1776417903.05.017903.05.0199451233.05.01020.03.06.011.026.6222081205.511.026.6222081205.511.50animals)2.0249001.01.011.001.02715412271556.011.520.8animals)1.74.711.214.9	Sample no.No. slices obtained Firm CrumblyPossible no.Slices obtained Firm Crumbly \mathcal{N} \mathcal{N} SEMIMEMBRANOSUS MUSCLE (continued)chloride chlorideinjection (continued)d samples177641790611054.53.05.011.027.22002710200271020028122003.06.011.026.655.8222081205.511.026.62603110271527152.56.011.520.827152.56.011.520.82.56.011.520.82.56.011.520.82.56.011.520.82.56.011.520.82.511.52.52.52.53.02.53.02.53.02.53.02.53.02.53.03.53.03.63.03.73.53.73.53.73.53.73.53.73.53.7

Table 2 (continued)

Animal	Sample	No. s obta	lices ined	Possible no.		Slices obtained	
no.	no.	Firm C:	rumbly	slices	Firm	Crumbly	Tota]
					%	%	%
· · ·	S	EMIMEMBI	RANOSUS	MUSCLE (c	ontinu	ed)	
Lactic	acid inj	ection		6. · ·			
Control	samples						
VI	175 176	1 8	3 3	10 12	10.0 66.7	30. 0 25.0	40.0 91.7
Av.	• . •	4.5	3.0	11.0	38.4	27.5	65.8
VII	198 202	0 1	3 6	11 11	0 9.1	27 .3 54.5	27.3 63.6
Av.	· · ·	0.5	4.5	11.0	4.6	40.9	45.4
VIII	225 227	0	4 1	11 12	0	36.4 8.3	36.4 8.3
Av.		0	2.5	11.5	0	22.4	22.4
Av. (3	animals)	1.7	3.3	11.2	14.3	30.3	44.8
IX	247 248	0	4 1	11 11	0	36.4 9.1	36.4 9.]
Av.		0	2.5	11.0	0	22.8	22.8
X	270 274	2	8 2	11 11	18.2 54.5	72.7 18.2	90.9 72.7
Av.	· · ·	4.0	5.0	11.0	36.4	45.4	81.8
Av. (5	animals)	1.8	3.5	11.1	15.9	31.8	47.6
				· · ·			

- 188 -

Table 2 (continued)

Animal	Sample	No. sl obtai	lices Ined	Possible no.		Slices obtained	
no.	no.	Firm Cu	cumbly	slices	Firm	Crumbly	Total
	nin alle a stati sina signi (nin a company)			an a	7.	%	%
	S	EMIMEMBI	RANOSUS	MUSCLE (c	ontinu	ed)	
Lactic	acid inj	ection (contin	ued)			
Injecte	d sample	S					
VI	175	2	6	11	18.2	54.5	72.7
	176	3	5	11	27.3	45.4	72.7
Av.	j •	2.5	5.5	11.0	22.8	50.0	72.7
VII	198	0	4	10	0	40.0	40.0
	202	10	1	12	83.3	8.3	91,6
Av.		5,0	2.5	11.0	41.6	24.2	65.8
VIII	225	5	3	12	41.7	25.0	66.7
	227	2	5	12	16.7	41.7	58.4
Av.		3.5	4.0	12.0	29.2	33.4	62.6
Av. (3	animals)	3.7	4.0	11.3	31.2	35.9	67.0
IX	247	0	3	11	0	27.3	27.3
	248	0	0	11	0	O _N is	0
Av.		0	1.5	11.0	0	13.6	13.6
х	270	0	9	12	0	75.0	75.0
	274	4	4	11	36.4	36.4	72.8
Av.		2.0	6.5	11.5	18.2	55.7	73.9
Av. (5	anim als)	2.6	4.0	11.3	22.4	35.4	57.7

Table 2 (continued)

nimal	Sample	No. s. obta:	lices ined	Possible no.	- -	Slices obtained	7
no.	no.	Firm C:	rumbly	slices	Fi rm	Crumbly	Tota
	 -				%	%	ħ
· : '	ta ang Sang ta	SEMIMEMB	RANOSUS	MUSCLE (c	ontinu	ed)	
odium	chlorid	e and la	stic ac	id injecti	on		
ontrol	sample	8					
VI	174	0	8	10	0	80.0	80.
	178	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	5	12	41.7	41.7	83.
Av.	4	2.5	6.5	11.0	20.8	60.8	81.
VII	201	0	8	12	0	66.7	66.
	203	2	7	12	16.7	58.3	75.
Av.		1.0	7.5	12.0	8.4	62.5	70.
VIII	223	· · · · · · · · · · · · · · · · · · ·	7	12	0	58.3	58.
	224	3	6	11	27.3	54.5	81.
Av.	i e.	1.5	6.5	11.5	13.6	56.4	70.
Av. (3	animals) 1.7	6.8	11.5	14.3	59.9	74.
XI	246	0	2	11	0	18.2	18.
	250	2	2	12	16.7	16.7	33.
Av.		1.0	2.0	11.5	8.4	17.4	25.
x	273	7	4	12	58.3	33.3	91.
	275	0	6	12	0	50.0	50.
Av.		3.5	5.0	12.0	29.2	41.6	70.
Av. (5	animals) 1.9	5.5	11.6	16.1	47.7	63.

Animal Sample	No. s. obta:	lices ined	Possible no.		Slices obtained	
110. 110.	Firm Ci	rumbly	slices	Firm	Crumbly	Total
	-		5 	h	%	%
SI	EMIMEMBI	RANOSUS	MUSCLE (c	ontinu	ed)	
Sodium chloride	and lac	ctic ac	id injecti	on (co	ntinued)	
Injected samples	8					
VI 174	7	2	11	63 .6	18.2	81.8
178	0	7	10	0	70.0	70.0
Av.	3.5	4.5	10.5	31.8	44.1	75.9
VII 201	1	8	10	10.0	80.0	90.0
203	0	7	12	0	58.3	58.3
Av.	0.5	7.5	11.0	5.0	69.2	74.2
VIII 223	5	4	12	41.7	33.3	75.0
224	1	5	11	9.1	45.4	54.5
Av .	3.0	4.5	11.5	25.4	39.4	64.8
Av. (3 animals)	2.3	5.5	11.0	20.7	50.9	71.6
IX 246	0	4	10	0	40.0	40.0
250	3	4	11	27.3	36.4	63.7
Av.	1.5	4.0	10.5	13.6	38.2	51.8
X 273	3	5	11	27.3	45.4	72.7
275	0	6	12	0	50.0	50.0
Av.	1.5	5.5	11.5	13.6	47.7	61.3
Av. (5 animals)	2.0	5.2	11.0	17.9	47.7	65.6
		(con	tinued)			

- 190 -

Table 2 (continued)

Animal no.	Sample no.	No. s obta Firm C	lices ined rumbly	Possible no. slices	Firm	Slices obtained Crumbly	Total
follow and a standard and a standard and the standard and the standard and the standard and the standard and th				ad to be a second a special of the second as a seco	K	%	ø
		B	ICEPS F	EMORIS MUS	CLE		
Sodium	chloride	inject:	ion	9 × 4			
Control	samples		•	10	05 0		~~ ~
. VI	184	3 77	. 8 	12	25.0	00.7	91.7
	100	1	v		00.0	~~**	10.0
Av.		5.0	5.5	12.5	39.4	44.9	84.3
VTT	205	8	2	11	72.7	18.2	90.9
سموندي ¥ `````	207	9	2	īī	75.0	16.7	91.7
Av.		8.5	2.0	11.5	73.8	17.4	91.3
VIII	228	5	2	13	38.5	15.4	53.9
	230	6	4	11	54.5	36.4	90.9
Av.	· ·	5.5	3.0	12.0	46.5	25.9	72.4
Av. (3	animals)	6.3	3.5	12.0	53.2	29.4	82.7
IX	256	0	3	12	0	25.0	25.0
	257	6	5	11	54.5	45.4	99.9
Av.	•	3.0	4.0	11.5	27.2	35.2	62.4
x	277	10	1	12	83.3	8.3	91.6
	279	11	0	11	100.0	0	100.0
Av.	•	10.5	0.5	11.5	91.6	4.2	95.8
Av. (5	animals)	6.5	3.0	11.8	55.7	25.5	81.2
			(con	tinued)			

Table 2 (continued)

Animal	Sample	No. s obta	lices ined	Possible no.	the second s	Slices obtained	
no.	no.	Firm C	rumbly	slices	Firm	Crumbly	Tota:
					%	%	%
	X	BICEPS	FEMORIS	MUSCLE (c	ontinu	ed)	
Sodium	chlorid	e inject	ion (co	ntinued)		4 	
Tutoto		~ ~					
TUJACIA	JOV JOV	98	9	77	81 8	18.9	100.0
A T	185	11	ĩ	12	91.7	8.3	100.0
Av.	ε.	10.0	1.5	11.5	86.8	13.2	100.0
VII	205	10	2	12	83.3	16.7	100.0
	207	8	4	12	66.7	33.3	100.0
Av.	X = 0	9.0	3.0	12.0	75.0	25.0	100.0
VIII	228	6	2	11	54.5	18.2	72.7
	230	4	6	11	36.4	54.5	90.9
Av.		5.0	4.0	11.0	45.4	36.4	81.8
Av. (3	animals) 8.0	2.8	11.5	69.1	24.9	93.9
XI	256	0	3	11	0	27.3	27.3
	257	6	6	12	50.0	50.0	100.0
Av.		3.0	4.5	11.5	25.0	38.6	63.6
x	277	6	5	11	54.5	45.4	99.9
	279	11	2	13	84.6	15.4	100.0
Av.		8.5	3.5	12.0	69 .6	30.4	100.0
Av. (5	animals) 7.1	3.3	11.6	60.4	28.7	89.]

.

Table 2 (continued)

Animal S	ample no.	No. a obta	lices	Possible no.		Slices obtained	
galiguegalitarian distanta da second		Firm (rumbly	slices	Firm	Crumbly	Total
1977) 1977 - 1977 1977 - 1977		•	•	1 - 1 	%	%	%
· •	. · · .	BICEPS	FEMORIS	MUSCLE (continu	ed)	
Lactic ac	id inj	ection	• •	14 10	an Al-	n., P	
Control s	amples	8					
VI	181 183	11 10	0 2	11 12	100.0 83.3	0 16.7	100.0 100.0
Av.		10.5	1.0	11.5	91.6	8.4	100.0
VII	204	4	3	13	30.8	23.1	53.9
Av.	200	7.0	2.5	12.5	57.0	19.9	77.0
VIII	232 233	11 0	29	13 12	84.6	15.4 75.0	100.0 75.0
Av.		5.5	5.5	12.5	42.3	45.2	87.5
Av. (3 ar	imals)	7.7	3.0	12.2	63.6	24.5	88.2
IX	25 3 255	0	1 3	10 11	0	10.0 27.3	10.0 27.3
Av.		0	2.0	10.5	0	18.6	18.6
X	276 278	2 10	4 1	12 11	16.7 90.9	33.3 9.1	50.0 100.0
Av.		6.0	2.5	11.5	53.8	21.2	75.0
Av. (5 ar	imals) 5.8	2.7	11.7	48.9	22.7	71.6

Table 2 (continued)

Animal Sample	No. s obta	lices ined	Possible no.		Slices obtained	
no, no.	Firm C	rumbly	slices	Firm	Crumbly	Tota]
			und ben allen der leiten der Heit - von andere sonder Freisten der 1	%	%.	%
	BICEPS	FEMORIS	MUSCLE (continu	ed)	
Lactic acid inj	ection	(continu	(bau			
Injected sample	8					
VI 181	11	0	11	100.0	0	100.0
183	7	5	12	58.3	41.7	100.0
Av.	9.0	2.5	11.5	79.2	20.8	100.0
VII 204	3	3	12	25.0	25.0	50.0
206	8	2	11	72.7	18.2	90.9
Av.	5.5	2.5	11.5	48.8	21.6	70.4
VIII 232	11	1	12	91.7	8.3	100.0
233	8	2	11	72.7	18.2	90.9
Av.	9.5	1.5	11.5	82.2	13.2	95.4
Av. (3 animals)	8.0	2.2	11.5	70.1	18.5	88.6
IX 253	0	2	10	0	20.0	20.0
255	0	4	11	0 °	36.4	36.4
Av.	0	3.0	10.5	0	28.2	28.2
X 276	5	5	12	41.7	41.7	83.4
278	9	1	11	81.8	9.1	90.9
Av.	7.0	3.0	11.5	61.8	25.4	87.2
Av. (5 animals)	6.2	2.5	11.3	54.4	21.8	76.2
		(con	tinued)			

Table 2 (continued)

Animal	Sample	No. s. obta	lices Ined	Possible no.	2002 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	Slices obtained	
42.W *		Firm C:	rumbly	slices	Firm	Crumbly	Total
		n - e e			%	K	%
	•	BICEPS 1	FEMORIS	MUSCLE (continu	ed)	
Sodium	chloride	and lac	stic ac	id inject	ion		
Contro:	l samples						
VI	180	3	3	9	33.3	33.3	66.6
	182	12	0	12	100.0	0	100.0
Av		7.5	1.5	10.5	66.6	16.6	83.3
VII	208	4	5	12	33.3	41.7	75.0
	209	11	1	12	91.7	8.3	100.0
Av.	∎ the states of	7.5	3.0	12.0	62.5	25.0	87.5
VIII	229	7	2	11	63.6	18,2	81.8
	231	5	6	12	41.7	50.0	91.7
Av	•	6.0	4.0	11.5	52.6	34.1	86.8
Av. (3	animals)	7.0	2.8	11.3	60,6	25.2	85 .9
IX	252	0	0	11	0	0	0
	254	0	9	11	0	81.8	81.8
Av	•	0	4.5	11.0	0	40.9	40.9
x	280	9	1	11	81.8	9.1	90.9
	281	12	0	12	100.0	0	100,0
Av	•	10.5	0.5	11.5	90.9	4.6	95.4
Av. (5	animals)	6.3	2.7	11.3	54.5	24.2	7 8 .8
			(con	tinued)			

Animal no.	Sample	No. slices obtained		Possible no.	Possible no.		Slices obtained	
		Firm C	rumbly	slices	Firm	Crumbly	Total	
· · ·					K	%	%	
••		BICEPS	FEMORIS	MUSCLE (ontinu	ed)		
Sodium	<u>chloride</u>	and la	ctic ac	id inject	Lon (co	ntinued)		
Injecte	d sample	5. 5				and An Article An Article An Article		
VI	180	0	5	11	0	45.4	45.4	
	182	11	0	11	100.0	0	100.0	
Av.	n an	5.5	2.5	11.0	50.0	22.7	72.7	
VII	208	2	6	12	16.7	50.0	66.7	
	209	12	0	12	100.0	0	100.0	
Av.	je ^{na} stra	7.0	3.0	12.0	58.4	25.0	83.4	
VIII	229	5	6	11	45.4	54.5	99.9	
	231	4	9	13	30.8	69.2	100.0	
Av.		4.5	7.5	12.0	38.1	61.8	100.0	
Av. (3	animals)	5.7	4.3	11.7	48.8	36.5	85.4	
тх	252	0	4	11	0	36.4	36.4	
	254	0	9	11	0	81.8	81.8	
Av.	n National States and States	0	6.5	11.0	0	59.1	59.1	
X	280	10	2	13	76.9	15.4	92.3	
	281	10	1	11	90.9	9.1	100.0	
Av.	й И	10.0	1.5	12.0	83.9	12.2	96.2	
Av. (5	animals)	5.4	4.2	11.6	46.1	36.2	82.3	

- 196 -

Table 3. Slicing Quality of Canned Beef. Judges' ratings of sliceability (from sample used in scoring) and the sliceability calculated by difference between weight of the canned beef and the unsliceable portion. The range for sliceability scores is 10 for extremely good slicing quality to 1 for extremely poor quality.

Antmalf	* Somole	Slice-	Slice	ability or	basis	of wt.
NU.	Dampre	ability	Canned	Unslice-	Slicea	ble meat
1100	11.0.0	score	meat a	ble meat	(by di	fference
			gm.	gm.	gm.	%
	LONG	JISSIMUS DOF	SI MUSCLE	, LOIN POP	TION	
Sodium	<u>chloride</u>	injection			· ·	
Control	l samples					
VT	162	6.7	379	59	320	84.4
VII	188	6.3	392	230	162	41.3
VIII	211	7.7	364	145	219	60.2
Av. (3	animals)	6.9	378	145	234	62.0
IX	234	4.7	376	248	128	34.0
X	260	4.0	373	165	208	55.8
Av. (5	animals)	5.9	377	169	207	55.1
Thieste	al samala					
TT1 0000	Joo Joo	2 XX	17 FZ /2	07	005	TO A
T A T	102	0.7	370	81	160	10.4
VII	211	2.7	408 362	276	86	23.8
Av. (3	animals)	3.7	382	199	183	47.8
IX	234	3.3	360	326	34	9.4
X	260	9.3	406	73	333	82.0
Av. (5	animals)	4.7	382 continued)	199	183	47.0

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

Table 3 (continued)

6	Sama7a	Slice	- Slic	eability (on basis of	wt.
no.	no.	abilit; score	y Canned meat	Unslice- able meat	Sliceable (by diffe	meat rence
			gm.	gm.	gm.	%
]	LONGISSIMUS	DORSI	MUSCLE, LOI	N PORTION	(continued)	,
Lactic	acid injec	tion				
Contro:	l samples					
VI	164	9.3	391	26	365	93.4
VII	187	2.0	394	359	35	8.9
VIII	210	3.0	363	331	32	8.8
Av. (3	enimals)	4.8	383	239	144	37.0
IX	236	4.0	378	279	99	26.2
x	259	2.3	378	334	44	11.6
Av. (5	animals)	4.1	381	266	115	29.8
Inject	ed samples					
VI	164	7.7	380	52	328	86.3
VII	187	6.0	383	157	226	59.0
VIII	210	6.3	354	62	292	82.5
Av. (3	animals)	6.7	372	90	282	75.6
IX	236	3.0	365	254	111	30.4
х	259	5.7	364	134	230	63.2
Av. (5	animals)	5.7	369	132	237	64.3
			(continued)		

Antmol	Comple	Slice-	<u></u>	<u>ceability c</u>	n basis o	f wt.
T BULLING	Sambre	ability	Canned	Unslice-	Sliceab	le mea
110+	110.	SCOTO	meat	able meat	(by dif:	ferenc
			gm.	gm.	gm.	%
1	LONGISSIMU	IS DORSI MUS	CLE, LO	IN PORTION	(continue	d)
Sodium	chloride	and lactic	<u>acid in</u>	jection		
Control	L samples					
VI	163	5.3	387	126	261	67.
VII	186	7.0	390	73	317	81.
VIII	212	5.3	364	189	175	48.
Av. (3	animals)	5.9	380	129	251	65.
IX	235	2.3	366	332	34	9.
X	258	8.0	372	76	296	79.
Av. (5	animals)	5.6	376	159	217	57.
Injecte	ed samples	ананананананананананананананананананан			• •	
VI	163	9.3	385	58	327	84.
VII	186	3.7	384	240	144	37.
VIII	212	7.0	353	70	283	80.
Av. (3	animals)	6.7	374	123	251	67.
IX	235	3.0	355	327	28	7.
х	258	6.3	395	80	315	79.
Av. (5	animals)	5.9	374	155	219	58,

Table 3 (continued)

Animal	Samla	Slice-	S11	ceability on	basis	of wt.
no.	no.	ability score	Canned meat	Unslice- able meat	Slices (by di	ble meat fference)
			gm.	gm.	gm.	×
	LONG	GISSIMUS DOR	SI MUSC	LE, RIB PORT	ION	
Sodium	<u>chloride</u>	injection				
Contro	l samples	н. 1		. 1		
VI	167	9.3	372	0	372	100.0
VII	189	8.0	391	85	306	78.3
VIII	214	7.0	378	49	329	87.0
Av. (3	animals)	8.1	380	45	336	88.4
IX	239	8.7	375	22	353	94.1
X	261	8.0	356	99	257	72.2
Av. (5	animals)	8.2	374	51	323	86.3
Inject	ed sample	3				.:
VI	167	9.3	384	33	351	91.4
VII	189	6.7	384	173	211	54.9
VIII	214	8.0	357	6 6	291	81.5
Av. (3	animals)	8.0	375	91	284	75.9
IX	239	5.0	368	109	259	70.4
x	261	8.0	356	82	274	77.0
Av. (5	animals)	7.4	370	93	277	75.0

Table 3 (continued)

Animal	Sample	Slice-	Sli Canned	Ceability of	n basis (of wt.
no.	no.	score	meat	able meat	(by dif	ference
Ann an a		n dan mengeri kan seri ya kan mengera mengera kan ya kan ing	gm.	gm.	gm.	%
	LONGISSIMU	S DORSI	MUSCLE, R	IB PORTION	(continue	(be
Lactio	acid injec	tion				
Control	l samples					
VI	165	6.3	368	81	287	78.0
VII	190	8.3	424	0	424	100.0
VIII	215	9.0	379	35	344	90.8
Av. (3	anim als)	7.9	390	39	352	89.6
IX	237	8.3	364	45	319	87.6
x	262	8.7	383	58	325	84.8
Av. (5	animals)	8.1	384	44	340	88.2
Injecte	d samples					
VT	165	4.7	363	183	180	49.6
VTT	190	7.3	390	0	390	100.0
VIII	215	8.7	359	Ŏ.	359	100.0
Av. (3	animals)	6.9	371	61	310	83.2
IX	237	5.7	343	66	277	80.8
X	262	9.0	363	35	328	90.4
Av. (5	animals)	7.1	364	57	307	84.2

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	S11 Canned meat	ceability Unslice- able meat	on basis of Sliceal (by dif	of wt. ole meat fference)
	<u>La nome estado en la consecta da conse</u>	an a	gm.	gm.	gm.	70
J	LONGISSIMU	S DORSI MU	SCLE, RI	B PORTION	(continued	1)
Sodium	chloride	and lactic	acid in	jection	• •	-
Contro:	l samples	I		- 6 · · · 		
VI VII VIII	166 19 1 213	7.0 9.0 7.0	378 387 383	145 27 20	233 360 363	61.6 93.0 94.8
Av. (3	animals)	7.7	383	64	319	83.1
IX	238	3.3	374	266	108	28.9
х	263	3.7	378	320	58	15.3
Av. (5	animals)	6.0	380	156	224	58.7
Inject	ed samples	ана стана 1971 — Полония Стана 1971 — Полония Стана Стана 1971 — Полония Стана С				
IV IIV IIIV	166 191 213	7.3 6.3 6.3	388 394 359	62 36 26	32 6 358 333	84.0 90.9 92.8
Av. (3	animals)	6.6	380	41	339	89.2
IX	238	5.3	356	256	100	28.1
х	263	8.3	385	83	302	78.4
Av. (5	animals)	6.7	376	93	284	74.8

Animal	Sample	Slice-	Sli	ceability on	basis	of wt.
no.	no.	ability	Canned	Unslice-	Slicea	ble meat
an a	angelen interest and a starter over some over provident at some some	acora	11168 L	ADTA WAY?	(by ur	TTerence
			gm.	gm.	gm.	%
	D	SOAS WATOR	AND PROA	R MINAR MIRA	TPC	
			THE LOOM			
Sodium	<u>chloride</u>	injection				
Control	samples			и и и т. 5		
VI	168	5.3	414	0	414	100.0
VII	193	7.0	425	149	276	64.9
VIII	218	9.0	379	51	328	86.5
Av. (3	animals)	7.1	406	67	339	8 3.8
IX	240	5.7	422	189	233	55.2
X	265	4.7	373	94	279	74.8
Av. (5	animals)	6.3	403	97	306	76.3
Injecte	d samples	3				
VI	168	3.7	388	75	313	80.7
VII	193	4.7	423	28 9	134	31.7
VIII	218	6.3	359	226	133	37.0
Av. (3	animals)	4,9	390	197	193	49.8
IX	240	2.7	387	348	39	10.1
X	265	6.7	362	58	304	84.0
Av. (5	animals)	4.8	384	199	185	48.7

Table 3 (continued)

Animal no.	Sample no.	Slice- ability	Slic Canned	Unslice-	on basis of Sliceable	wt. e meat
<u>ale și la factoria în constante și a factoria</u>	adıran bandır bili Kürter Mariyen ayan da	9001.A	gm.	gm.	gm.	^{5rence} /
	1					- •
	PSOAS MA	JOR AND PSO	AS MINO	R MUSCLES	(continued)	
Lactic	acid inje	ction				
Control	L samples			•		
VI	169	6.7	418	0	418	100.0
VII	194	5.7	436	147	289	66.3
VIII	216	5.0	413	207	206	49.9
Av. (3	animals)	5.8	422	118	304	72.1
IX	241	5.0	408	272	136	33.3
X	266	7.3	383	86	297	77.5
Av. (5	animals)	5.9	412	142	269	65.4
Injecte	a samples					
VI	169	6.7	379	50	329	86.8
VII	194	3.7	369	295	74	20.0
VIII	216	4.7	380	231	149	39.2
Av. (3	animals)	5.0	376	192	184	48.7
XI	241	4.7	385	284	101	26.2
X	266	6.0	353	55	298	84.4
Av. (5	animals)	5.2	373	183	190	51.3
		(c	ontinue	đ)		

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	Sli Canned meat	ceability on Unslice- able meat	basis o Sliceab (by dif	f wt. le meat ference)
			gm.	gm.	gm.	%
	PSOAS MA	JOR AND PS	OAS MINO	R MUSCLES (c	ontinued)
Sodium	<u>chloride</u>	and lactic	<u>acid in</u>	jection		
Control	samples					
VI VII VIII	170 192 217	8.7 5.3 5.3	396 415 403	25 260 129	371 155 274	93.7 37.3 68.0
Av. (3	animals)	6.4	405	138	267	66.3
IX	242	8.0	382	126	256	67.0
X	264	5.3	393	264	129	32.8
Av. (5	animals)	6.5	398	161	237	59.8
Injecte	d samples	3				
VI VII VIII	170 192 217	8.0 3.3 6.7	391 414 380	44 277 138	34 7 137 242	88.7 33.1 63.7
Av. (3	animals)	6.0	395	153	242	61.8
IX	242	4.0	373	282	91	24.4
x	264	7.0	363	133	230	63.4
Av. (5	animals)	5.8	384	175	209	54.7

Table 3 (continued)

Antmol	Comple	Slice-	Sli	ceability on	basis of wt.	
no.	no.	ability score	Canned meat	Unslice- able meat	Slicea (by di	ble meat fference
	97999-09899-09999-09999-09999-09999-09999-09999-09999-09999-09999-09999-0999-0999-0999-0999-0999-0999-0999-099	n an	gm.	gm.	gm.	%
		SEMITI	INDINOSU	S MUSCLE		
Sodium	chloride	injection				
Control	L samples					
VI	172	10.0	369	39	330	89.4
VII	197	9.3	405	0	405	100.0
VIII	219	10.0	371	0	371	100.0
Av. (3	animals)	9.8	382	13	369	96.5
IX	244	9.0	369	37	332	90.0
Х	269	10.0	363	0	363	100.0
Av. (5	animals)	9.7	375	15	360	95.9
Injecte	d samples	3	•			
VT	172	10.0	358	0	358	100.0
VIT	197	9.7	384	õ	384	100.0
VIII	219	9.7	374	Ō	374	100.0
Av. (3	animals)	9.8	372	0	372	100.0
IX	244	9.7	360	0	360	100.0
Х	269	10.0	377	0	377	100.0
Av. (5	animals)	9.8	371	Ο	371	100.0

Table 3 (continued)

Animal	Sample	Slice-	<u>S11</u>	ceability or	n basis (of wt.
no.	no.	ability	Canned	Unslice-	Sliceal	ole meat
		score	meat	able meat	(by dif	Terence
· · ·			gm.	gm.	gm.	%
	S	EMITENDINO	SUS MUSC	LE (continue	(be	
Lactic	acid inje	etion				
Contro	l samples					
VI	173	10.0	363	121	242	66.7
VII	195	9.3	375	0	375	100.0
VIII	220	10.0	362	0	362	100.0
Av. (3	animals)	9.8	367	40	326	88.9
IX	245	8.7	377	38	339	89.9
х	267	10.0	362	0	362	100.0
Av. (5	animals)	9.6	368	32	336	91.3
*						
Inject	ed samples					
VI	173	10.0	401	141	260	64.8
VII	195	10.0	372	0	372	100.0
VIII	220	9.7	360	0	360	100.0
Av. (3	animals)	9.9	378	47	331	88.3
IX	245	9.3	366	0	366	100.0
X	267	10.0	347	0	347	100.0
Av. (5	animals)	9.8	369	28	341	93.0

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	Sliceability on basis of wt.			of wt.
			Canned	Unslice-	Sliceal	ole meat
			meet	able meat	(by difference	
			gm.	gm.	gm.	%
	S	EMITENDINOS	SUS MUSC	LE (continue	d)	
Sodium	<u>chloride</u>	and lactic	acid in	jection		
Contro	l samples					
VI	171	9.7	372	0	372	100.0
VII	196	10.0	380	0	380	100.0
VIII	221	10.0	369	0	369	100.0
Av. (3	animals)	9.9	374	0	374	100.0
IX	243	8.7	364	0	364	100.0
х	268	10.0	365	0	365	100.0
Av. (5	animals)	9.7	370	0	370	100.0
Inject	ed samples					
VI	171	10.0	370	O	370	100.0
VII	196	9.7	365	0	365	100.0
VIII	221	10.0	355	0	355	100.0
Av. (3	animals)	9.9	363	0	363	100.0
IX	243	9.0	370	36	334	90.3
X	268	10.0	359	0	359	100.0
Av. (5	animals)	9.7	364	7	357	98.1
AV. (5	animais)	9.7	304	7	227	98
.

Table 3 (continued)

Animal Sample no. no.	Slice- ability source	Sl1 Canned meat	ceability o Unslice- able meat	n basis o Sliceab (by dif	f wt. le meat ference
an a	a de de la calega de	gm.	Em •	gm.	%
	SEMIME	MBRANOSU	S MUSCLE		
Sodium chloride	injection		<u>к</u> . т		e .
Control samples		en an		· · · · · · · · · · · · · · · · · · ·	
VI 177 179	4.7 5.3	363 374	119 147	244 227	67.2 60.7
Av.	5.0	368	133	236	64.0
VII 199 200	4.7 7.7	3 55 360	283 60	72 300	20.3 83.3
Av.	6.2	358	172	186	51.8
VIII 222 226	7.3 7.7	367 355	124 121	243 234	66.2 65.9
Av.	7.5	361	122	238	66.0
Av. (3 animals)	6.2	362	142	220	60.6
IX 249 251	5.0 7.3	355 367	226 166	129 201	36.3 54.8
Av.	6.2	361	196	165	45.6
X 271 272	8.0 6.3	327 330	64 23	263 307	80.4 93.0
Av.	7.2	328	44	285	86.7
Av. (5 animals)	6.4	355	133	222	62.8

Table 3 (continued)

And we 7	Camp? -	Slice-	S110	ceability on	on basis of wt.		
Animai	Sample	ability	Canned	Unslice-	Sliceal	ole meat	
no.	no.	score	meat	able meat	(by dif	ference	
	ч Т		gm.	gm.	gm.	%	
	et	PM TRENDDANS (P (acetime	.a)		
	01	SIN LINISMIDINA IV C		me (constine			
Sodium c	hloride	<u>injection</u>	(continue	ed)			
Injected	sample	8					
VI	177	8.0	345	36	309	89.6	
	179	6.3	352	127	225	63.9	
Av.		7.2	348	82	267	76.8	
VTT	199	8.7	346	78	268	77.4	
	200	7.3	350	20	330	94.3	
Av.		8.0	348	49	299	85.8	
VIII	222	5.3	350	101	249	71.1	
	226	5.3	330	174	156	47.3	
Av.		5.3	340	138	202	59.2	
Av. (3 a	nimals)	6.8	345	90	256	73.9	
IX	249	1.7	342	313	29	8.5	
	251	3.3	345	261	84	24.3	
Av.		2.5	344	287	5 6	16.4	
X	271	7.3	344	75	269	78.2	
	272	5.7	324	63	261	80.6	
Av.		6.5	334	69	265	79.4	
Av. (5 a	nimals)	5.9	343	125	218	63.5	

Table 3 (continued)

Animal no.	Sample no.	Slice- ability scores	Sli Canned meat	ceability of Unslice- able meat	n basis o Sliceab (by dif	f wt. le meat ference
		292 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 1	gm•	gm.	gm.	%
a L	SE	MIMEMBRANOS	SUS MUSC	LE (continu	ed)	
Lactic	acid inje	etion				
Control	samples					
VI	175 176	6.7 8.0	374 358	201 29	173 329	46.2 91.9
Av.	,	7.4	366	115	251	69.0
VII	198 202	4.7	364 362	228 106	136 256	37.4 70.7
Av.	•	5.4	363	167	196	54.0
VIII	225 227	4.3 4.3	345 358	221 307	124 51	35.9 14.2
Av.		4.3	352	264	88	25.0
Av. (3	animals)	5.7	360	182	178	49.3
IX	247 248	6.0 3.3	348 359	206 301	142 58	40.8 16.2
Av.	•	4.6	354	254	100	28.5
X	270 274	7.0 9.0	318 328	31 65	287 263	90.2 80.2
Av.	an a	8.0	323	48	275	85.2
Av. (5	animals)	5.9	352	170	182	52.3

Animal	Samola	Slice-	S11	Sliceability or		of wt.
no.	no.	ability	Canned	Unslice-	Sliceat	le meat
	34 W ¥ :	score	meat	able meat	(by dif	ference
		· · ·	gm.	gm.	gm.	ħ
		· · · · · · · · · · · · · · · · · · ·			_	
	SEI	(IMEMBRANOS	SUS MUSC	LE (continue	ed)	
Lactic a	cid inied	tion (cont	inued)			
	and the second s					
Injected	samples			an a		
VI	175	7.3	376	85	291	77.4
	176	7.3	350	68	282	80.6
Δ		7.3	363	76	286	70 0
44 9			000		200	10+0
VII	198	4.7	342	164	178	52.0
	202	9.3	358	30	328	91.6
Av.		7.0	350	97	253	71.8
			~~~	•••	200	12.9.4
VIII	225	6.7	333	81	252	75.7
	227	4.7	351	134	217	61.8
Av.		5.7	342	108	234	68.8
Av. (3 a	nimals)	6.7	352	94	258	73.2
тү	947	3.7	343	920	114	33.9
	248	3.3	342	316	26	7.6
					· · ·	
Av.		3.5	342	272	70	20.4
T	270	6.7	302	70	232	76.8
	274	5.0	316	73	243	76.9
			-	-		
Av.	1 4	5.8	309	72	238	76.8
Av. (5 s	nimals)	5.9	341	125	216	63.4
يسير يشرف الفاحد			and the second sec		alan <del>man</del> a an	

Table 3 (continued)

÷

Animal	Sample	Slice-	<u></u>	ceability o	n basis o	f wt.
no.	no.	ability score	Canned meat	Unslice- able meat	Sliceab (by dif	le meat ference
	4794 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	yakan perinta dan keranta d	gm.	en.	gm.	%
		1932 - T. B. T. S.	0110 SETO 0	****	24. • • • •	
	51	em i membran c	808 MUSC	LE (CONTINU	8a)	
Sodium	<u>chloride</u>	and lactic	acid in	jection	:	
Control	L samples					
VI	174	6.7	368	77	291	79.
	148	· /•3	000	54	908	85.
Av.	na Maria	7.0	366	66	300	82.3
VII	201	4.3	363	104	259	71.
	203	7.0	368	71	297	80.
Av	an tha	5.6	366	88	278	76.
VIII	223	5.7	352	124	228	64.
	224	7.3	347	63	284	81.
AV		6.5	350	94	256	73.
Av. (3	animals)	6.4	361	83	278	77.
IX	246	2.0	364	275	89	24.
	250	7.3	355	214	141	39.
Av		4.6	360	244	115	32.
X	273	9.3	332	20	312	94.
	275	6.7	336	117	219	65.
Av	•	8.0	334	68	266	79.
Arr (5	enimels)	6-3	365	112	243	68.

Animal no.	Sample no.	Slice- ability score	S1 Canne meat	iceability d Unslice able mea	on basis - Sliceal t (by dif	of wt. ble meat fference
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gm.	gm •	gm.	%
	SEM	IMEMBRANO:	SUS MUS	CLE (conti	nued)	
Sodium	chloride a	nd lactic	acid in	njection (	continued)	
Injecte	d samples			ana ang ang ang ang ang ang ang ang ang		
VI	174 178	8.7 6.3	366 344	51 97	315 247	86.1 71.8
Av.	k	7.5	355	74	281	79.0
VII	201 203	7.7 5.3	352 375	30 110	322 265	91.5 70.7
Av.	• •	6.5	364	70	294	81.1
VIII	223 224	7.3 7.0	345 336	70 138	275 198	<b>79.7</b> 58.9
Av.		7.2	340	104	236	69.3
Av. (3	animals)	7.1	353	83	270	76.5
IX	246 250	6.7 9.0	353 346	175 93	178 253	50.4 73.1
Av.		7.8	350	134	216	61.8
X	273 275	7.3 7.0	326 333	66 128	260 205	79.8 61.6
Av.	•	7.2	330	97	232	70.7
Av. (5	animals)	7.2	348	96	252	72.4

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	Slic Canned meat	eability on Unslice- able meat	basis Slicea (by di	of wt. ble meat fference
<b>MARANA ANA ARA</b>			gm.	gn.	gm.	%
		BICEPS	FEMORIS	MUSCLE		
Sodium	chloride	injection	an a		· .	
Control	samples					
VI	18 <b>4</b> 185	9.7 9.0	<b>401</b> 394	20 68	381 326	95.0 82.7
Av.		9.4	398	44	354	88.8
VII	205 207	9.0 8.7	392 373	35 28	357 345	91.1 92.5
Av.		8.8	382	32	351	91.8
VIII	228 230	4.0 8.3	383 344	118 22	265 322	69.2 93.6
Av.		6.2	364	70	294	81.4
Av. (3	animals)	8.1	381	49	333	87.3
IX	256 257	6.3 9.3	362 359	200 0	162 359	44.8 100.0
Av.	,	7.8	360	100	260	72.4
X	277 279	8.7 10.0	35 <b>6</b> 345	26 0	330 345	92 <b>.7</b> 100.0
Av.		9.4	350	13	338	96.4
Av. (5	animals)	8.3	371	52	319	86.2

Animal no.	Sample no.	Slice- ability score	Sli Canned meat	Ceability of Unslice- able meat	n basis ( Slicea) (by dif	of wt. ole meat ference
		san yan yang dina sa kang sa kang san sa kang kang sa k	gn.	gm.	gm.	K
	B	ICEPS FEMO	RIS MUSC	LE (continu	led)	
Sodium c	h <b>loride</b>	injection (	continu	ed)		
Injected	samples					
VI	184	9.0	360	0	360	100.0
	100	10.0	010	V.	010	100.0
Av.		9.5	366	0	366	100.0
VII	205	9.3	367	0	367	100.0
	207	9.0	350	0	350	100.0
Av.		9.2	358	0	358	100.0
VIII	228	9.3	347	64	283	81.6
	230	7.3	342	30	312	91.2
Av.		8.3	344	47	298	86.4
Av. (3 a	nimals)	9.0	35 <b>6</b>	16	341	95.5
IX	256	4.7	366	235	131	35.8
	257	9.3	359	0	359	100.0
Av.		7.0	362	118	245	67.9
X	277	8.7	360	0	360	100.0
	279	10.0	337	0	337	100.0
Av.		9.4	348	0	348	100.0
Av. (5 a	nimals)	8.7	356	33	323	90.9
· •	•					

.

Table 3 (continued)

And the T	0	Slice-	Sli	ceability on	basis o	of wt.
Animal	Sample	ability	Canned	Unslice-	Sliceal	ole meat
no.	no.	score	meat	able meat	(by dif	ference
	2 ******		gm.	gm.	gm.	%
	19.		DTO MITOA	TTO Locustino		
	D.	icers femu	nto muou	re fcourture	α)	
Lactic a	acid inje	ction	an an Arran an Arran Arran an Arran an Arr		*	•
Control	samples					
VI	181	9.7	372	0	372	100.0
	183	10.0	364	0	364	100.0
Av.		9.8	368	0	368	100.0
VII	204	5.7	391	138	253	64.7
	206	7.7	379	0	379	100.0
Av.		6.7	385	69	316	82.4
VIII	232	9.7	354	0	354	100.0
	233	7.3	357	74	283	79.3
Av.		8.5	356	37	318	89.6
Av. (3 a	animals)	8.3	370	35	334	90.7
IX	253	3.7	367	316	51	13.9
	255	5.3	364	205	159	43.7
Av.		4.5	366	260	105	28.8
x	276	5.7	375	156	219	58.4
<b>4</b> 77	278	9.3	344	0	344	100.0
Av.		7.5	360	78	282	79.2
Av. (5	animals)	7.4	367	89	278	76.0

.

Table 3 (continued)

Animal	Sample	Slice-	Sli	ceability or	n basis d	basis of wt.	
no.	no.	ability	Canned	Unslice-	Sliceal	ole meat	
		score	meat	able meat	(by dif	ference	
			gm.	gm.	gm.	%	
	В	ICEPS FEMOR	IS MUSCI	LE (continue	ed)		
Lactic a	cid inje	ction (cont	inued)				
Injected	samples			and an		е 	
VI	181	9.7	343	<u>ъ</u> . О	343	100.0	
	183	8.7	340	0	340	100.0	
Av.		9.2	342	0	342	100.0	
VII	204	7.3	370	197	173	46.8	
	20 <b>6</b>	9.0	354	37	317	89.5	
Av.		8.2	362	117	245	68.2	
VIII	232	9.0	348	0	348	100.0	
	233	8.3	350	23	327	93.4	
Av.		8.6	349	12	338	96.7	
Av. (3 a	nimals)	8.7	351	43	308	88.3	
IX	253	4.7	345	243	102	29.6	
	255	6.7	337	185	152	45.1	
Av.		5.7	341	214	127	37.4	
X	276	7.7	348	54	294	84.5	
	278	10.0	321	22	299	93.1	
Av.		8.8	334	38	296	88.8	
	nimels)	8.1	346	76	270	78.2	

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	Sli Canned meat	ceability on Unslice- able meat	basis Sliceal (by dif	of wt. ole meat fference
<b> </b>		<b></b>	gm.	gm.	gm.	%
	E	SICEPS FEMOR	IS MUSC	LE (continue	d)	
Sodium c	hloride	and lactic	acid in	jection		
Control	samples		11. A.L.	an a		. ¹
VI	180 182	8.0 10.0	417 362	105 0	312 362	74.8 100.0
Av.		9.0	390	52	337	87.4
VII	208 209	6.7 9.7	382 385	89 0	293 385	76.7 100.0
Av.		8.2	384	45	339	88.4
VIII	229 231	9.3 9.0	358 370	66 27	292 343	81.6 92.7
Av.		9.2	364	46	318	87.2
Av. (3 a	nimals)	8.8	379	<b>4</b> 8	331	87.7
IX	252 254	3.0 7.3	<b>376</b> 358	3 <b>36</b> 55	40 303	10.6 84.6
Av.		5.2	367	196	172	47.6
X	280 281	10.0 9.7	355 365	36 0	319 365	89.8 100.0
Av.		9.8	360	18	342	94.9
Av. (5 a	nimals)	8.3	373	71	302	81.1

Table 3 (continued)

Animal no.	Sample no.	Slice- ability score	<u>Slic</u> Canned meat	Unslice- able meat	on basis ( Sliceal (by dif	of wt. Die meat ference
		n bin na sana an	gm.	gm.	gm.	%
	· · · · I	BICEPS FEMO	RIS MUSCI	E (continu	1ed)	
Sodium	chloride	and lactic	acid in:	ection (co	ontinued)	
Injecte	d samples	3				
VI	180	7.0	403	198	205	50.9
	182	9.3	368	0	368	100.0
Av.		8.2	386	99	286	75.4
VTT	208	5.0	382	110	272	71.2
	209	9.7	378	0	378	100.0
Av.		7.4	380	55	325	85.6
VIII	229	9.3	354	0	354	100.0
	231	7.7	349	0	349	100.0
Av.	•	8.5	352	, 0	352	100.0
Av. (3	animals)	8.0	373	51	321	87.(
IX	252	7.0	363	202	161	44.4
	254	8.3	363	65	298	82.1
Av	•	7.6	363	134	230	63.2
x	280	8.0	369	25	344	93.2
	281	9.7	364	0	364	100.0
Av		8.8	366	12	354	96.6
Av. (5	animals)	8.1	369	60	309	84.2

Table 4. pH of Beef. pH of beef muscles aged one day and before dividing into cuts. Anterior, middle, and posterior positions are represented for muscles of trunk; proximal, middle, and distal positions for muscles of leg. (Left muscles were used for control cuts; right muscles for injected cuts.)

1 m 1 m n 7	Dogitation	Posit	Position in muscle		
no.	in animal	Anterior (Proximal)	Middle	Posterior (Distal)	Average
tin di anti fina da cana a		pH	рĦ	pH	рН
	LONGISSI	MUS DORSI MU	SCLE, LO	IN PORTION	
VI	Left	5.35	5.35	5.35	5.35
	Right	5.35	5.35	5.40	5.37
VII	Left	5.40	5.45	5.40	5.42
	Right	5.45	5.40	5.40	5.42
VIII	Left	5.40	5.45	5.40	5.42
	Right	5.50	5.55	5.40	5.48
IX	Left	5.45	5.45	5.35	5.42
	Right	5.35	5.45	5.35	5.38
<b>X</b>	Left	5.70	5.80	5.60	5.70
	Right	5.70	5.75	5.55	5.67
	LONGISSI	MUS DORSI MU	SCLE, RI	B PORTION	
VI	Left	5.40	5.40	5.40	5.40
	Right	5.45	5.40	5.40	5.42
VII	Left	5.50	5 <b>.45</b>	5.45	5.47
	Right	5.55	5 <b>.</b> 50	5.45	5.50
VIII	Left	5.45	5.40	5.45	5.43
	Right	5.45	5.45	5.45	5.45
IX	Left	5.45	5.40	5.45	5.43
	Right	5.45	5.35	5.35	5.38
X	Left	5.65	5.60	5.40	5.55
	Right	5.65	5.60	5.40	5.55

ē

Table 4 (continued)

, . ,

.

. a

. *

Animal	Position	Posit	Position in muscle		
no.	in animal	Anterior (Proximal)	Middle	Posterior (Distal)	Average
	- 5	pH a	рH	рĦ	pH
1	. 4	. 9 ⁻¹ - 8			
. * .	PSOAS M	AJOR AND PSO	AS MINOR	MUSCLES	
VI	Left	5.35	5.40	5.50	5.42
	Right	5.35	5.40	5.50	5.42
VII	Left	5.35	5.40	5.50	5.42
• • • • • • • • • • • • • • • • • • •	Right	5.40	5.45	5.50	5.45
VIII	Left	5.40	5.40	5.50	5.43
- B	Right	5.40	5.40	5.50	5.43
TX	Left	5.35	5.40	5.55	5.43
	Right	5.40	5.40	5.55	5.45
X	Left	5.65	5.70	5.65	5.67
	Right	5.55	5.65	5.65	5.62
4		SEMITENDINO	SUS MUSC	LE	
VI	Left	5.35	5.35	5.40	5.37
	Right	5.35	5.35	5.45	5.38
VII	Left	5.35	5.35	5.40	5.37
	Right	5.40	5.40	5.50	5.43
VIII	Left	5.35	5.40	5.45	5.40
	Right	5.35	5.40	5.40	5.38
IX	Left	5.30	5.30	5.35	5.32
	Right	5.30	5.30	5.40	5.33
X	Left	5.50	5.50	5.60	5.53
	Right	5.50	5.50	5.60	5.53
		(contin	ued)		,

Antmal	Position	Position in muscle			****
no.	in animal	Anterior (Proximal)	Middle	Posterior (Distal)	warage
tellindette gestind for solden states		pH	рĦ	pH	pH
	· •				
		SEMIMEMBRANO	SUS MUSC	LE	
VI	Left	5.30	5.30	5.30	5.30
· · ·	Right	5.30	5.35	5.30	5.32
VII	Left	5.35	5.30	5.35	5.33
	Right	5.35	5.30	5.35	5.33
VIII	Left	5.40	5.30	5.35	5.35
	Right	5.40	5.30	5.35	5.35
IX	Left	5.40	5.30	5.30	5.33
	Right	5.50	5.30	5.30	5.37
X	Left	5.55	5.50	5.55	5.53
	Right	5.55	5.50	5,60	5.55
		BICEPS FEMO	RIS MUSC	LE	
			н н		
VI	Left Right	5.45	5.40	5.40	5.42 5.42
	114 Der 0		0100		0.1.20
VII	Left	5.50	5.55	5.50	5.52
	Right	5.55	5.55	5.50	5.53
VIII	Left	5.40	5.35	5.40	5.38
	Right	5.40	5.35	5.45	5.40
IX	Left	5.40	5.35	5.35	5.37
	Right	5.45	5.40	5.35	5.40
Х	Left	5.75	5.60	5.65	5.67
	Right	5.75	5.60	5.65	5.67

Table 5. pH of Beef. pH of beef muscles (average of three determinations) before dividing into cuts but after aging one day; of beef cuts aged eight days (one determination); and of the canned beef (one determination).

Animal* no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
•#####################################	рĦ	nde nike fille fille fille fille fille fille fille som provinse som som state state at at a som som som som so	pH	pH
	· . • · · · · · · · · · · · · · · · · ·	• • • • • · · · · · · · · · · · · · · ·		
	LONGISSIMUS DORS	SI MUSCLE, L	OIN PORTION	
Sodium chlo	ride injection			
Left muscle		Control	samples	
VI	5.35	162	5.45	5.75
VII	5.42	188	5.40	5.60
VIII	5.42	211	5.35	5.75
Av. (3 anims	als) 5.40		5.40	5.70
IX	5.42	234	5.30	5.65
x	5.70	260	5.50	5.90
Av. (5 anima	als) 5.46		5.40	5.73
Right muscle	9	Injected	samples	
VI	5.37	162	5.35	5.70
VII	5.42	188	5.40	5.60
VIII	5.48	211	5.35	5.70
Av. (3 anima	als) 5.42		5.37	5.65
IX	5.38	234	5.40	5.65
X	5.67	260	5.55	5.85
Av. (5 anim	als) 5.46		5.41	5.70

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
<b></b>	рН	ni	рН	pH
LONGI	SSIMUS DORSI MUSCLE	, LOIN POI	RTION (continu	(ber
Lactic acid	injection		en en la companya de la companya de Recordo de la companya	
Left muscle	(same as for	Control a	samples	
VI	sodium chloride	164	5.30	5.70
VII	injection)	187	5.45	5.60
VIII	e Alexandre en la companya de la com La companya de la comp	210	5.30	5.70
Av. (3 anim	als)		5.35	5.67
IX		236	5.30	5.60
X		259	5.50	5.90
Av. (5 anim	als)	. <u>.</u> .	5.37	5.70
			4	
Right muscl	e (same as for	Injected	samples	
VI	sodium chloride	164	5.40	5.70
VII	injection)	187	5.45	5.60
VIII		210	5.30	5.70
Av. (3 anim	als)		5.38	5.67
IX		236	5.30	5.60
X		259	5.50	5,90
Av. (5 anim	als)		5.39	5.70
	(cont	(haunt)		

- 226 -

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
- <b>Sept. 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999</b> - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1990 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	pH	an de fan de	pH	рH
LONG	ISSIMUS DORSI MUSCLI	E, LOIN PO	RTION (continu	(ber
Bodium chl	oride and lactic act	ld injecti	on	
Left muscl	e (same as for	Control	samples	
VT	sodium chloride	163	5.40	5.70
VTT	injection)	186	5.40	5.60
VTTT		212	5.30	5.65
V ala ala ala		and the second	0000	0.00
Av. (3 ani	mals)		5.37	5.65
IX		235	5.35	5.60
X	a.	258	5.55	5.85
Av. (5 ani	mals)		5.40	5.68
toht muse	le (same as for	Injected	samples	
177	sodium chloride	163	5.40	5.70
TA	injection)	106	5 45	5 55
VIL	111 J 0 0 0 1 021/	200	6 36	5 85
VIII		610	0.00	0+00
Av. (3 ani	mals)		5.40	5.63
IX		235	5.40	5.60
x		258	5.55	5.85
Am (E ant	mala)		5.43	5.67

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	pH		pH	pН
	LONGISSIMUS DORS	SI MUSCLE, R	IB PORTION	• • • • •
Sodium chl	oride injection			
Left muscle	3. Julio - ¹⁹⁶ - Angli Ang	Control	samples	
VI	5.40	167	5.50	5.80
VII	5.47	189	5.55	5.80
VIII	5.43	214	5.40	5.75
Av. (3 anim	mals) 5.43		5.48	5.78
IX	5.43	239	5.35	5.65
<b>X</b>	5.55	261	5.55	6.00
Av. (5 ani	mals) 5.46		5.47	5.80
	£		·	
Right muse.		Injected	samples	
VI	5.42	167	5.50	5.75
VII	5.50	189	5.65	5.75
VIII	5.45	214	5.50	5.80
Av. (3 ani	mals) 5.46		5.55	5.77
IX	5.38	239	5.40	5.65
X	5.55	261	5.60	5.90
Av. (5 ani	mals) 5.46		5.53	5.77

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Samp <b>le</b> no.	Beef cuts aged eight days	Canned beef
for the second secon	рН		pH	рH
LONGIS	SIMUS DORSI MUSCLE	, RIB POR	TION (continue	ed)
Lactic acid	injection		ę	
Left muscle	(same as for	Control	samples	
VI	sodium chloride	165	5.45	5.85
VII	injection)	190	5.55	5.75
VIII		215	5.45	5.75
Av. (3 anima	l <b>s</b> )		5.48	5.78
IX		237	5.40	5.75
X		262	5.50	5.90
Av. (5 anima	ls)	en e	5.47	5.80
ų.				
Right muscle	(same as for	Injected	samples	
VI	sodium chloride	165	5.50	6.00
VII	injection)	190	5.60	5.75
VIII		215	5.45	5.75
Av. (3 anima	ls)		5.52	5.83
IX		237	5.40	5.75
X		262	5.60	5.95
Av. (5 anima	ls)		5.51	5.84

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	pH	<b>A - Marine Conference and Anticase Conference and Antices and Antices and Antices and Antices and Antices and A</b>	рН	pH
LONGIS	SIMUS DORSI MUSCLI	3, RIB POR	TION (continue	ed)
Sodium chlor	ide and lactic ac	ld injecti	on	- 12 - 2
Left muscle	(same as for	Control	samoles	
VT	sodium chloride	166	5.45	5-80
VIT	injection)	191	5-50	5.70
VIII		213	5.40	5.85
Av. (3 anime	ls)		5.45	5.78
IX		238	5.35	5.65
X		263	5.50	5.90
Av. (5 anims	1s)		5.44	5.78
Right muscle	(same as for	Injected	samples	
VI	sodium chloride	166	5.60	5.80
VII	injection	191	5.60	5.70
VIII		213	5.40	5.80
Av. (3 anima	ls)		5.53	5.77
IX		238	5.35	5.65
X		263	5.65	5.90
Av. (5 anima	ls)	<ul> <li>A state of the sta</li></ul>	5 <b>.52</b>	5.77
	(con	tinued)		

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
and the second secon	pH		pH	pH
	PSOAS MAJOR	AND PSOAS MIN	OR MUSCLES	:
Sodium chlori	de injection		and a second	
Left muscle		Control a	samples	
VI	5.42	168	5.50	5.85
VII	5.42	193	5.40	5.65
TIIA	5.43	218	5.55	5.85
Av. (3 animal	Ls) 5.42		5.48	5.78
IX	5.43	240	5.40	5.60
X	5.67	265	5.65	6.00
Av. (5 anima)	Ls) 5.47		5.50	5.79
			ν ·	2
Right muscle	·	Injected	samples	
VI	5.42	168	5.55	5.85
VII	5.45	193	5.50	5.65
VIII	5.43	218	5.50	5.80
Av. (3 anima)	ls) 5.43		5.52	5.77
XI	5.45	240	5.45	5.60
X	5.62	265	5.50	5.85
Av. (5 anima:	ls) 5.47		5.50	5.75

Table 5 (continued)

Animel no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	рH		pH	pН
PSOAS	MAJOR AND PSOAS	MINOR MUSCI	ES (continued	1)
Lactic acid	injection			
Left muscle	(same as for	Control a	amples	
VI	sodium chloride	169	5.60	5,85
VII	injection)	194	5.55	5.75
VIII		216	5.45	5.80
Av. (3 anima:	ls)		5.53	5.80
IX	n de la construcción de la constru No construcción de la construcción de No construcción de la construcción d	241	5.45	5.65
X		266	5.65	6.00
Av. (5 anima)	ls)		5,54	5.81
Right muscle	(same as for	Injected	samples	
VT	sodium chloride	169	5.65	5.80
VII	injection)	194	5.60	5.80
VIII	* · · · · · · · · · · · · · · · · · · ·	216	5.40	5.75
Av. (3 anima)	ls)		5.55	5.78
IX		241	5.45	5.65
X		266	5.65	6.05
Av. (5 anima)	ls)		5.55	5.81
	(con	tinued)		

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	pH		рH	pH
PSO	S MAJOR AND PSOAS	MINOR MUSC	LES (continue	<b>d</b> )
Sodium chle	oride and lactic ac	id injecti	on	
	lagun on Pon	0 on the o 7		
Pere muscre	Same as IOF	CONCROL	sampres	
VI	androm curoride	170	5.60	5.85
VII	INJECTION)	192	5.40	5.65
VIII		217	5.45	5.80
Av. (3 anim	nals)		5.48	5.77
IX		242	5.55	5.75
X		264	5.60	6.00
Av. (5 anim	nals)		5,52	5.81
Kight musel	Le (Same as Ior	TUJecreo	samples	
VI	sourum chioride	170	5.60	5.85
VII	TUJeccron)	192	5.50	5.65
VIII		217	5.45	5.75
Av. (3 anim	nals)		5.52	5.75
IX		242	5.55	5.75
X		264	5.60	5.90
			5 54	5 70

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample nc.	Beef cuts aged eight days	Canned beef
	рН	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	рН	рH
	SEMIT	ENDINOSUS MUS	CLE	
Sodium chlor	ide injection	н - - 	a a se anna 1	
Left muscle		Control	samples	
VI	5.37	172	5.45	5.80
VII	5.37	197	5.45	5.75
VIII	5.40	219	5.35	5.75
Av. (3 anima	ls) 5.38		5.42	5.77
IX	5.32	244	5.40	5.65
X	5.53	269	5.55	5.90
Av. (5 anima	1s) 5.40		5.44	5.77
Right muscle		Injected	samples	
VI	5.38	172	5.40	5.80
VII	5.43	197	5.50	5.70
VIII	5.38	219	5.35	5.75
Av. (3 anima	als) 5.40		5.42	5.75
IX	5.33	244	5.40	5.65
X	5.53	269	5.60	5.85
Av. (5 enims	ls) 5.41		5.45	5.75

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
Bhranistan (faile and the galline and galling and a long day in the second second second second second second s	PH	i falogi panani kan kan di kan yang dan yang di kan yang di kan yang di kan yang di kan yang dan kan yang dan k	рН	pH
	SEMITENDINOSUS	MUSCLE (c	continued)	2
Lactic acid	injection		. , κ	
Left muscle	(same as for	Control	samples	
VI	sodium chloride	173	5.40	5.85
VII	injection)	195	5.50	5.65
VIII		220	5.40	5.75
Av. (3 anima	Av. (3 animals)		5.43	5.75
IX		245	5.40	5.70
· · · X	an Arthur an An Arthur an Arthur an Arthur An Arthur an Arthur an Arthur an Arthur	267	5.50	5.90
Av. (5 anime	ls)		5.44	5.77
Right muscle	(same as for	Injected	samples	
VI	sodium chloride	173	5.50	5.85
VII	injection)	195	5.40	5.65
VIII		220	5.50	5.75
Av. (3 anima	als)		5.47	5.75
IX		245	5.45	5.70
X		267	5.55	5.90
Av. (5 anima	als)		5.48	5.77
	(con	tinued)		

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	рН		pli	pH
	SEMITENDINOSUS M	USCLE (co	ntinued)	
Sodium chlori	ide and lactic aci	<u>d</u> injecti	on	
Left muscle	(same as for	Control	samples	
VI	sodium chloride	171	5.45	5.80
VII	injection)	196	5.40	5.65
VIII		221	5.50	5.80
Av. (3 anima)	ls)		5.45	5.75
IX		243	5.40	5.65
X		268	5.50	5.95
Av. (5 anima:	ls)		5.45	5.77
Right muscle	(same as for	Injected	samples	
VT	sodium chloride	171	5.40	5.75
VTT	injection)	196	5.45	5.65
VIII		221	5.45	5.75
Av. (3 anima:	ls)		5.43	5.72
IX		243	5.40	5.65
X		268	5.60	5.85
Av. (5 anima)	ls)		5.46	5.73
	( cont	inued)		

## Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
and an	Нq	na an a	рН	pH
	SEMIMEMI	BRANOSUS MUS	CLE	
Sodium chlorid	ie injection			
Left muscle		Control	samples	
VI	5.30	177 179	5 <b>.3</b> 5 5.35	5.80 5.75
Av.			5.35	5.78
VII	5.33	199 200	5.45 5.45	5.60 5.60
Av.	a		5.45	5.60
VIII	5.35	222 226	5.30 5.35	5 <b>.65</b> 5.70
A <b>∀</b> •			5.32	5.68
Av. (3 animal:	s) 5.33		5.37	5.69
IX	5.33	249 251	5.35 5.40	5.60 5.60
Av.			5.38	5.60
x	5.53	271 272	5.45 5.50	5.85 5.90
Av.			5.48	5.88
Av. (5 animal	s) 5.37		5.40	5.71
	(0	ontinued)		

*

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
,	рН		рН	рН
	SEMIMEMBRANOS	SUS MUSCLE (	continued)	
Sodium chlo	oride injection (	(continued)		
Right muscl	i de la companya de La companya de la comp	Injected	d samples	
IV	5.32	177	5.40	5.75
	а 1 1	179	5.35	5.70
Av.			5.38	5.72
VTT	5.33	199	5.50	5.60
ing andre soller		200	5.45	5.60
Av.	4		5.48	5.60
VÍTT	5.35	222	5.35	5.65
		226	5.40	5.65
Av.			5.38	5.65
Av. (3 anim	mals) 5.33		5.41	5.66
IX	5.37	249	5.40	5.55
		251	5.40	5.55
Av.			5.40	5.55
x	5.55	271	5.50	5.80
. =-		272	5.50	5.80
Av.			5.50	5.80
Are (E onto	nola) 5.38		5.43	5.66

Table 5 (continued)

4

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight d <b>ays</b>	Canned beef
n an	pH	an a	pH	pH
	SEMIMEMBRANOSUS	MUSCLE (c	ontinued)	4
Lactic acid	injection		р. 	a an an
Left muscle	(same as for	Control	samples	
VI.	sodium chloride injections)	175 176	5.35 5.35	5.75 5.75
A <b>v.</b>			5.35	5.75
VII		198 202	5.45 5.40	5.60 5.60
Av.			5.42	5.60
<b>III</b> ,		225 227	5.40 5.35	5 <b>.65</b> 5 <b>.65</b>
Av.			5.38	5.65
Av. (3 anim	als)		5.38	5.67
IX		247 248	5.30 5.40	5.60 5.55
Av.			5.35	5.58
X		270 274	5•45 5•70	5.80 5.95
Av.			5.58	5.88
Av. (5 anim	als)		5.42	5.69
	and the second second			

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	рН		pH	pH
	SEMIMEMBRANOSUS	MUSCLE (c	ontinued)	
Lactic acid	injection (continu	led)	z .	
Right muscle	(same as for	Injected	samples	
VI	sodium chloride	175	5.35	5.80
	injection)	176	5.35	5.75
				,
Av .			5.35	5.78
VTT		198	5.45	5.60
₩ ada, at-		202	5.40	5.60
Av.			5.42	5.60
VTTT		225	5.40	5.70
A T T T		227	5.35	5.65
Av.			5.38	5.68
Av. (3 anima)	ls)		5.38	5.69
1		947	5 30	5 60
TV		248	5.35	5.55
				,
Av.			5.32	5.58
•		270	5 45	5,80
A.	,	274	5.70	6.05
			i i i i i i i i i i i i i i i i i i i	
Av.			5.58	5.92
Av. (5 anima	ls)		5.41	5.71
ф ,	(cont	inued)		

4

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	рĦ	an a	pH	рH
	SEMIMEMBRANOSUS	MUSCLE (c	ontinued)	
		and a second a second		ч. К
Sodium chlor	ide and lactic ac	id injecti	on	
Left muscle	(same as for	Control	samples	•
VI	sodium chloride	174	5.35	5.70
· a .	injection)	178	5.35	5.85
Av.			5.35	5.78
VTT		201	5.45	5.60
್ಷ ಆಗ್ರೆ ಕಾರ್ಮ ರ		203	5.40	5.60
Av.			5.42	5.60
VTTT		223	5.35	5.65
		224	5.35	5.60
· Av.			5.35	5.62
Av. (3 anima	ls)		5.37	5.67
TX		246	5.30	5.60
		250	5.35	5.55
Av.			5.32	5.58
X		273	5.50	5.85
		275	5.55	6.00
Av.	ж 		5.52	5.92
Av. (5 anima	als)		5.39	5.70

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
ter an de en sy seu al mei de antra de dir, nich a ben mei an de de antra de	pH		pH	pH
e Norman Norman	SEMIMEMBRANOSUS	MUSCLE (c	ontinued)	
Sodium chlor:	ide and lactic ac	id injecti	on (continued)	
Right muscle	(same as for	Injected	samples	
	sodium chloride injection)	174 178	5.35 5.35	5.70 5.80
Av.	an a		5.35	5.75
VII	a construction of the second sec	201	5.40	5.60
		203	5.40	5.60
Av.			5.40	5.60
VIII	al de la construcción de la constru Regular de la construcción de la con Regular de la construcción de la co	223	5.35	5.65
т. В		224	5.40	5.60
Av.			5.38	5.62
Av. (3 anima:	ls)		5.38	5.66
IX		246	5.35	5.55
		250	5.40	5.60
Av.			5.38	5.58
x		273	5.55	5.85
		275	5.75	5.95
Av.			5.65	5.90
Av. (5 anima:	ls)		5.43	5.69
	(con	tinued)		

## Table 5 (continued)

Animal no.	Bee (un age	of muscles ninjected) od one day	Sample no.	Beef cuts aged eight days	Canned beef
••••••••••••••••••••••••••••••••••••••		pH		рЫ	рĦ
		BICEPS	FEMORIS MUS	CIE	
Sodium chlo	oride	injection			
Left muscle	<b>)</b>		Control	samples	
IV		5.42	184 185	5.40 5.45	5.80 5.80
Av.	. c			5.42	5.80
VII		5.52	205 207	5.45 5.40	5.70 5.60
Av.				5.42	5.65
VIII	л	5.38	228 230	5 <b>.35</b> 5 <b>.30</b>	5.75 5.65
Av.				5.32	5.70
Av. (3 anim	nals)	5.44		5.39	5.72
IX		5.37	256 257	5•35 5•45	5.65 5.70
Av.				5.40	5.68
X		5.67	277 279	5.65 5.50	5.95 5.90
Av.				5.58	5.92
Av. (5 anim	nals)	5.47		5.43	5.75

Table 5 (continued)

. 8

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	pH	**************************************	рН	рН
	BICEPS FEMORIS	MUSCLE (con	tinued)	. W
Sodium chlorid	de injection (c	ontinued)		
Right muscle		Injected	samples	
VI	5.42	184	5.40	5.85
	,	185	5.45	5.80
Av.	**************************************		5.42	5.82
VTT	5.53	205	5.45	5.65
The second secon		207	5.40	5.60
Av.	· · · · · · · · · · · · · · · · · · ·		5.42	5.62
<b>()</b>	5 40	998	5.40	5.70
	0.4.20	230	5.35	5.65
Av.	ананан саранан саранан Алан саранан сар		5.38	5.68
Av. (3 animals	s) 5.45		5.41	5.71
TY	5 40	256	5.40	5.60
7.47	0.20	257	5.50	5.65
Av.			5.45	5 <b>.62</b>
x	5.67	277	5.55	5,95
<b>**</b> **		279	5.50	5.80
Av.			5.52	5.88
Arr (E antmali	a) 5.48		5.44	5.72

Table 5 (continued)

			-	
Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
entrangen i silvanden er ser in munikity en hein fan den silve silver.	pH	annan fruitstan a gu fairte an anna ann ann ann ann ann ann ann an	pH	pH
	BICEPS FEMORIS	MUSCLE (co	ntinued)	
Lactic acid	injection			
Left muscle	(same as for	Control	samples	
VI	sodium chloride injection)	181 183	5.50 5.40	5 <b>.85</b> 5 <b>.</b> 70
Av.			5.45	5.78
VII		204 206	5.45 5.40	5.70 5.65
Av.			5.42	5.68
VIII		232 233	5.35 5.45	5.75 5.75
Av.			5.40	5.75
Av. (3 anim	als)		5.42	5.74
IX		253 255	5.30 5.40	5 <b>.6</b> 5 5.60
Av.			5.35	5.62
X		<b>276</b> 278	5 <b>.60</b> 5.45	6.00 5.90
Av.			5.52	5.95
Av. (5 anim	als)		5.43	5 <b>.76</b>
- 245 -

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
<ul> <li>March 2011 Control of Control o</li></ul>	рН	<del>in had the dawn all service in the particulation of the service in the service of the service in the service of the</del>	pH	pH
	BICEPS FEMORIS	MUSCLE (co	ntinued)	Ж
Lactic aci	d injection (contin	ued)	• .	
Right musc	le (same as for	Injected	samples	
VI	sodium chloride injection)	181 183	5.40 5.40	5.90 5.70
Av.			5.40	5.80
VII	an a	20 <b>4</b> 20 <b>6</b>	5.45 5.40	5.70 5.60
Av.	- * · ·		5.42	5.65
VIII		232 233	5.35 5.50	5.75
Av.			5.42	5.75
Av. (3 ani	mals)		5.41	5.73
IX		<b>253</b> 255	5.40 5.35	5.65
Av.			5.38	5.62
X		276 278	5.50 5.50	6.00 5.85
Av.	99. 		5.50	5.92
Av. (5 ani	mals)		5.42	5.75

Table 5 (continued)

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
yan anangkantang pangkanan kanalan kanalan yang pangkanan kanalan kanalan kanalan kanalan kanalan kanalan kana	рH		pH	pH
	BICEPS FEMORIS I	MUSCLE (co	ntinued)	
Sodium chlor:	Ide and lactic act	id injecti	on	
Left muscle	(same as for	Control	samples	
VI	sodium chloride injection)	180 182	5.50 5.35	5.85 5.85
Av.			5.42	5.85
VII		208 209	5.40 5.40	5.60 5.65
Av.			5.40	5.62
VIII		229 231	5:35 5:30	5.70 5.65
Av.		• • •	5.32	5.68
Av. (3 anima)	ls)		5.38	5.72
IX		252 254	5.45 5.30	5.70 5.65
Av.		a a secondaria de la companya de la A companya de la comp	5.38	5.68
X		280 281	5.55 5.45	5.95 6.00
Av.			5.50	5.98
Arr (E antma	1 e )		5.40	5.76

Animal no.	Beef muscles (uninjected) aged one day	Sample no.	Beef cuts aged eight days	Canned beef
	рН	<b></b>	рН	рĦ
а	BICEPS FEMORIS M	USCLE (CO	ntinued)	
Sodium chlor	ide and lactic aci	<u>d injecti</u>	on (continued)	
Right muscle	(same as for	Injected	samples	
VI	sodium chloride	180	5.50	5.80
	injection	182	5.40	5.80
Av.			5.45	5.80
VTT		208	5.45	5,60
	•	209	5.45	5.65
Av.			5.45	5.62
VTTT	•	229	5.45	5.70
♥ olis ale alle		231	5.40	5.65
Av.			5.42	5.68
Av. (3 anima	1s)		5.44	5.70
TY		252	5.45	5.65
10		254	5.45	5.60
Av.			5.45	5.62
X		280	5.55	5.80
		281	5.50	5.85
Av.	ter an an the second		5.52	5.82
Av. (5 anima	1s)		5.46	5.71

Table 6. Weight Changes of Beef before Canning. Initial weight of beef and weight of beef plus injecting solution one day after slaughter of animal; weight of aged beef eight days after slaughter; percentage weight after aging based on initial weight of sample.

Animal* no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. be ag	ef after ing
	en st	gm.	gm.	gm.	%
	LONGISS	IMUS DORSI	MUSCLE, LOIN	PORTION	
Sodium cl	n <b>loride in</b>	jection			
Control s	samples				an a
VI	162	606		598	98.7
VII	188	601		587	97.7
VIII	211	605		595	98.3
Av. (3 an	nimals)	604		593	98.2
IX	234	605		587	97.0
X	260	604		593	98.2
Av. (5 an	nimal <b>s</b> )	604		592	98.0
Injected	samples			· *	
VT	162	608	668	631	103.8
VIT	188	602	662	617	102.5
viii	211	606	666	593	97.8
Av. (3 an	nimals)	605	665	614	101.4
IX	234	606	666	635	104.8
x	260	606	666	634	104.6
Av. (5 a)	nimals)	606	666	622	102.7

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes. Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
<u></u>		gm.	gm.	gm.	%
LO	NGISSIMUS	DORSI MUSCLI	, LOIN PORTI	ION (contin	ued)
Lactic a	cid inject	ion			
Control	samples				
VI	164	604		597	98.8
VII	187	604		588	97.4
VIII	210	606		597	98.5
Av. (3 a)	nimals)	605		594	98.2
IX	236	606		594	98.0
X	259	607		598	98.5
Av. (5 a)	nimals)	605		595	98.2
Injected	samples				
VI	164	60 <b>6</b>	666	605	99.8
VII	187	608	668	599	98.5
VIII	210	606	666	602	99.3
Av. (3 a)	nimals)	607	667	602	99.2
IX	236	606	666	607	100.2
x	259	607	667	633	104.3
Av. (5 a)	nimals)	606	666	609	100.4

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	of after .ng
	1999 - Aline Marine, ang Salaman ang Salamin dina dina dina dina dina dina dina di	gm.	gm.	g <b>n</b> .	K
I	ONGISSIMUS D	ORSI MUSC	LE, LOIN PORTIC	ON (contin	med)
Sodium	chloride and	<u>lactic</u> a	cid injection		
Control	. samples				
VT	163	605		590	97.5
VTT	186	600		588	98.0
VITT	212	606		592	97.7
· alle sale alle					
Av. (3	animals)	604		590	97.7
IX	235	600		591	98.5
X	258	601		587	97.7
Av. (5	animals)	602		590	97.9
Injecte	d samples				
VT	163	608	668	630	103.6
VIT	186	604	664	622	103.0
VIII	212	607	667	630	103.8
Av. (3	animals)	606	666	627	103.5
IX	235	605	665	619	102.3
X	258	604	664	634	105.0
Av. (5	animals)	606	666	627	103.5
		(co	ntinued)		

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after .ng
<b>an internet and an and an and an and an and an </b>		gm.	gm.	gm.	%
	LONGIS	SIMUS DORSI	MUSCLE, RIB	PORTION	
Sodium g	hloride i	njection			
Control	samples				
VI	167	605		596	98.5
VII	189	601		594	98.8
VIII	214	606		603	99.5
Av. (3 a	nimals)	604		598	98.9
IX	239	608		597	98.2
х	261	608		603	99.2
Av. (5 e	inimals)	606		599	98.8
Injected	samples				
VT	167	600	660	640	106.7
VTT	189	608	668	661	108.7
VIII	214	605	665	643	106.3
Av. (3 s	inimals)	604	664	648	107.2
IX	239	605	665	646	106.8
x	261	607	667	661	108.9
Av. (5 s	inimals)	605	665	650	107.5
			<u>1</u>		

Table 6 (continued)

Anima] no.	. Sample no.	Initial wt.	Beef plus injecting solution	Wt. beef agin	'after Ig
<b>4</b>	nya na nya nya kata ina nya na nya na	gm.	gm.	gm.	%
	LONGISSIMUS	DORSI MUSCLE	, RIB PORTION	(continue	d)
Lactic	acid inject	tion			n Na Start
Contro	al samples				
VI	165	607		606	99.8
VII	190	603	a ser a s	593	98.3
VIII	215	606		598	98.7
Av. (3	5 animals)	605		599	98.9
IX	237	601		590	98.2
х	262	606		600	99.0
Av. (8	s animals)	605		5 <b>97</b>	98.8
Inject	ed samples				
VI	165	605	665	648	107.1
VII	190	602	662	619	102.8
VIII	215	605	665	616	101.8
Av. (3	3 animals)	604	664	628	103.9
IX	237	605	665	626	103.5
X	262	605	665	645	106.6
Av. (8	5 animals)	604	664	631	104.4

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
	n Marina da Santa da L	gm.	gm.	gm.	%
· L	ONGISSIMUS	DORSI MUSCI	E, RIB PORTI	ON (continu	led)
Sodium g	chloride an	<u>d lactic ac</u>	oid injection		en en en en
Control	samples			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
VT	166	605		599	99.0
VIT	191	601		589	98.0
VIII	213	607		603	99.3
The state	~~~~			000	00.0
Av. (3 a	animals)	604		597	98.8
IX	238	604		587	97.2
X	263	608		596	98.0
Av. (5	animals)	605		595	98.3
. 7					
Injected	d samples				
VT	166	607	667	642	105.8
VIT	191	605	665	622	102.8
VIII	213	607	667	646	106.4
Av. (3	anima <b>ls</b> )	60 <b>6</b>	666	637	105.0
IX	238	608	668	634	104.3
х	263	608	668	645	106.1
Av. (5	animals)	607	667	638	105.1

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. beef agir	f after ng
<b>Ballander States and States</b>	nan mar an	gm.	gm.	gm.	%
	PSOAS	MAJOR AND	PSOAS MINOR	MUSCLES	
<u>Sodium</u> <u>c</u>	hloride in	jection			
Control	samples				
VI	168	608		60 <b>6</b>	99.7
VII	193	604		594	98.3
VIII	218	605		597	98.7
Av. (3 a	nima <b>ls</b> )	606		599	98.9
IX	240	602		585	97.2
x	265	604		600	99.3
Av. (5 e	nimals)	605		59 <b>6</b>	98.6
Injected	samples				
VI	168	606	666	645	106.4
VII	193	605	665	646	106.8
VIII	218	606	666	650	107.3
Av. (3 a	nimals)	606	666	647	106.8
IX	240	606	666	637	105.1
X	265	607	667	648	106.8
Av. (5 a	nimals)	606	666	645	106.5
		4			

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. beef a aging	after
		gm.	gm.	gn.	%
	PSOAS MAJOR	AND PSOAS	MINOR MUSCLES	(continued	) 
Lactic	acid inject	Lon			• •
Control	l samples			an a	
VI	169	600		599	99.8
IIV	194	604		596	98.7
VIII	216	606		595	98.2
Av. (3	animals)	603		597	98.9
IX	241	607		601	99.0
X	266	602		596	99.0
Av. (5	animals)	604		597	98.9
Injecte	ed samples				
VI	169	601	661	630	104.8
VII	194	601	661	648	107.8
VIII	216	606	666	631	104.1
Av. (3	animals)	603	663	636	105.5
IX	241	604	664	639	105.8
X	266	605	665	636	105.1
Av. (5	animals)	603	663	637	105.5

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. be <b>ef</b> aging	after
		gm .	gn.	gm.	%
- B	PSOAS MAJOR	AND PSOAS	MINOR MUSCLES	(continued)	
Sodium	chloride and	lactic a	cid injection		с. 1917 г. 1917 г.
Control	L samples				•
VT	170	605		600	99.2
VIĪ	192	603		595	98.7
VIII	217	606		600	99.0
Av. (3	animals)	605		598	99.0
IX	242	608		59 <b>9</b>	98.5
X	264	605		599	99.0
Av. (5	animals)	605		599	98.9
Inject	ed samples				
VT	170	607	667	639	105.3
VIT	192	602	662	658	109.3
VIII	217	606	666	645	106.4
Av. (3	animals)	605	665	647	107.0
IX	242	602	662	636	105.6
X	264	605	665	636	105.1
Av. (5	animals)	604	664	643	106.3

Table 6 (continued)

Animal Sampl no. no.	e Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
<u> (1997)</u>	gm.	em.	gm.	%
	SEMITEN.	DINOSUS MUSCLE		
Sodium chloride	injection			
Control samples	ł			5
VT 172	608		605	99.5
VII 197	601		594	98.8
VIII 219	607		593	97.7
Av. (3 animals)	605		597	98.7
IX 244	605		593	98.0
X 269	604		601	99.5
Av. (5 animals)	605		597	98.7
Intected sample	S			
VT 179	607	667	634	104.4
VTT 107	603	663	644	106.8
VIII 219	606	666	624	103.0
Av. (3 animals)	605	665	634	104.7
IX 244	604	664	638	105.6
X 269	605	665	638	105.4
Av. (5 animals)	605	665	636	105.0

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef pl injecti solutio	ng Wt.	beef after aging
		gm •	gm•	gm.	- %
	SEM	ITENDINOSUS	MUSCLE	(continued)	
Lactic e	cid inject	ion			
Control	samples	× .			
VI	173	608		60'	7 99,8
VII	195	603		59'	7 99.0
VIII	220	608		60	2 99.0
Av. (3 s	nimals)	606		602	99.3
IX	245	609		602	98,8
x	267	604		600	99.3
Av. (5 a	nimals)	606		60	99.2
Injected	samples				•
vT	173	601	661	63(	104.8
VTI	195	600	660	610	5 102.7
VIII	220	607	667	60	6 99.8
Av. (3 a	anima <b>ls</b> )	603	663	61'	7 102.4
IX	245	602	662	60	99.7
x	267	608	668	63	3 104.1
Av. (5 s	anima <b>ls</b> )	604	664	61	7 102.2

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Initial Beef plus wt. injecting solution		of after .ng
	<u></u>	gm.	gm.	gm.	k
	SEMI	TENDINOSUS	MUSCLE (cont:	Lnued)	
Sodium	chloride an	d lactic a	cid injection		
Control	. samples		3 1	t di seconda di second E seconda di	
VI	171	607		600	98.8
VII	196	606		604	99.7
VIII	221	606		597	98.5
Av. (3	animals)	606		600	99.0
IX	243	604		588	97.4
Х	268	606		602	99.3
Av. (5	animals)	606		598	98.7
Injecte	d samples				
vr	171	606	666	636	105.0
vīī	196	604	664	635	105.1
VIII	221	607	667	642	105.8
Av. (3	animals)	60 <b>6</b>	666	638	105.3
IX	243	604	664	617	102.2
X	268	602	662	634	105.3
		COE	GGE	622	101 7

Table 6 (continued)

<b>.</b>		tial Beef plus injecting solution		Wt. beef after aging	
	gm.	gm .	g <b>m</b> .	ħ	
	SEMIMEMB	RANOSUS MUSCLE			
<u>ide in</u>	njection				
les					
177	604		597	98.8	
179	609		597	98.0	
	60 <b>6</b>		597	98.4	
199	605		594	98.2	
200	600		586	97.7	
	602		590	98.0	
222	606		591	97.5	
226	606		594	98.0	
	606		592	97.8	
ls)	605		593	98.1	
249	607		592	97.5	
251	600		578	96.3	
en e	604		585	96.9	
271	606		600	99.0	
272	604		59 <b>6</b>	98.7	
	605		598	98.8	
ls)	605		592	98.0	
	<u>ide</u> <u>ir</u> les 177 179 200 222 226 1s) 249 251 271 272 1s)	ide       injection         les       177       604         179       609       606         199       605       600         200       600       602         222       606       606         226       606       606         1s)       605       604         271       606       604         272       604       605         1s)       605       605	ide injection         les         177       604         179       609         606         199       605         200       600         602         222       606         226       606         1s)       605         249       607         251       600         604       604         271       606         272       604         605       605         1s)       605         (continued)       605	ide injection         les         177       604       597         179       609       597         199       605       594         200       600       586         602       590         222       606       591         226       606       591         226       606       592         1s)       605       593         249       607       592         251       600       578         604       585         271       606       598         1s)       605       592         (continued)       592	

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. been agin	f after ng
<u>.</u>	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	gm .	gm .	gm.	ħ
	SE	MIMEMBRANOSUS	MUSCLE (con	tinued)	
Sodium	chloride	injection (con	ntinued)		
Injecte	d samples				
VI	177	604	664	649	107.4
	179	602	662	625	103.8
Av.		603	663	637	105.6
VII	199	601	661	628	104.5
	200	606	666	644	106.3
Av.		604	664	636	105.4
VIII	222	606	666	633	104.4
	226	606	666	644	106.3
Av.		606	666	638	105.4
Av. (3	animals)	604	664	637	105.5
IX	249	608	668	637	104.8
	251	608	668	636	104.6
Av.		608	668	636	104.7
X	271	606	666	637	105.1
	272	604	664	635	105.1
Av.	;	605	665	63 <b>6</b>	105.1
Av. (5	animals)	605	665	637	105.2
		(con	tinued)		

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
	<u></u>	gm.	gm.	gm.	%
	SEMI	MEMBRANOSUS	MUSCLE (conti	Lnued)	
Lactic a	acid inject	ion			
Control	samples				
VT	175	600		589	98.2
- 484	176	605		596	98.5
		000		030	0.00
Av.	· ·	602		592	98.4
WTT	102	608		505	<b>07</b> 0
ATT	790	605		505	00 %
	202	005		090	90.0
Av.		606		595	98.1
<b>17</b> 7 7 7	005	6 0 M		507	00 /
VIII	623	606		50%	90.4
	66 I	000		000	30.2
Av.		606		590	97.3
Av. (3 6	animals)	605		592	97.9
τv	047	603		522	07 E
TV	64 C	807		604	0.10 A 00
	640	007		004	32.0
Av.		605		596	98.5
x	270	605		602	99.5
	274	606		599	98.8
	E FIT	000		000	
Av.		606		600	99.2
Av. (5 a	animals)	605		595	98.3

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	ef after ing
v .	en e	gm.	gm .	g <b>n</b> .	%
	SEM	IMEMBRANOSUS	MUSCLE (con	tinued)	
Lactic a	cid injec	tion (contin	nued)		•
Injected	samples				
VI	175 176	60 <b>4</b> 605	<b>664</b> 665	60 <b>6</b> 603	100.3 99.7
Av.		604	664	604	100.0
VII	198 202	604 602	664 662	625 613	103.5 101.8
Av.		603	663	619	102.6
VIII	225 227	60 <b>6</b> 605	66 <b>6</b> 665	612 606	101.0 100.2
Av.		606	666	609	100.6
Av. (3 s	nimals)	604	664	611	101.1
IX	247 248	604 601	664 661	60 <b>4</b> 60 <b>3</b>	100.0 100.3
Av.		602	662	604	100.2
X	270 274	605 60 <b>6</b>	665 666	621 628	102.6 103.6
Av.		606	666	625	103.1
Av. (5 s	nimals)	604	664	612	101.3

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. been agin	f after ng
<b>andre see and an an</b>		gm.	gm.	gm.	%
	SE	MI MEMBRANOSU	S MUSCLE (con	tinued)	
Sodium	chloride	and lactic a	cid injection		
Control	samples				
VI	174	606		596	98.3
	178	608		594	97.7
Av.		607		595	98.0
VTT	201	600		582	97.0
a and a second	203	606		594	98.0
Av.		603		588	97.5
VIII	223	608		596	98.0
	224	608		59 <b>6</b>	98.0
Av.		608		596	98.0
Av. (3	animals)	606		593	97.8
IX	246	604		593	98.2
	250	600		581	96.8
Av.		602		587	97.5
х	273	605		590	97.5
	275	604		600	99.3
Av.		604		595	98.4
Av. (5	animals)	605		592	97.9

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. beef agin	after g
	ang da da sa garan sa garan da sa da sa da	gm •	gm.	gm.	K
	SE	MIMEMBRANOSU	S MUSCLE (con	tinu <b>e</b> d)	•
Sodium	chloride	and lactic a	cid injection	(continued)	
Injecte	d samples				
VI	174 178	600 600	660 660	625 622	104.2 103.7
Av.		600	660	624	104.0
VII	201 203	606 602	666 662	637 641	105.1 106.5
Av.		604	664	639	105.8
VIII	223 224	606 607	666 667	623 619	102.8 102.0
Av.		606	666	621	102.4
Av. (3	animals)	603	663	628	104.1
IX	246 250	600 608	660 668	625 630	104.2 103.6
Av.		604	664	628	103.9
X	273 275	605 604	665 664	641 645	106.0 106.8
Av.		604	664	643	106.4
Av. (5	animals)	604	664	631	104.5

Table 6 (continued)

Animal no.	Sample no.	e Initial wt.	Beef plus injecting solution	Wt. bee agi	of after .ng
		gm.	gm.	gm.	%
- e		BICEPS	FEMORIS MUSCLE		
Sodium	<u>chloride</u>	injection			
Control	samples	an de la companya de La companya de la comp			
VI .	184 185	605 606		600 601	99.2 99.2
Av.		606		600	99.2
VII	205 207	601 607		598 601	99.5 99.0
Av.		604		600	99.2
VIII	228 230	605 606		59 <b>6</b> 596	98.5 98.3
Av.		606		59 <b>6</b>	98.4
Av. (3	animals)	605		599	98.9
IX	25 <b>6</b> 25 <b>7</b>	60 <b>7</b> 603		595 595	98.0 98.7
Av.		605		595	98.4
X	27 <b>7</b> 279	603 607		597 600	99.0 98.8
Av.		605		598	98.9
Av. (5	animals)	605		598	98.8

Animal no.	Sample no	Initial wt.	Beef plus injecting solution	Wt. be <b>ef</b> agir	after ng
<b></b>	######################################	gm.	gm .	gm.	%
	B	ICEPS FEMOR	IS MUSCLE (con	ntinued)	
Sodium	<u>chloride</u>	injection (	continued)		
Injecte	d samples				
VI	184 185	601 606	661 66 <b>6</b>	639 643	106.3 106.1
Av.		604	664	641	106.2
VII	205 207	60 <b>3</b> 607	663 667	652 664	108.3 109.4
Av.		605	665	658	108.8
VIII	228 230	605 608	665 668	638 635	105.4 104.4
Av.		606	666	636	104.9
Av. (3	animals)	605	665	645	106.6
IX	25 <b>6</b> 257	603 603	663 663	635 632	105 <b>.3</b> 104.8
Av.		603	663	634	105.0
X	277 279	608 600	<b>6</b> 68 660	629 641	103.4
Av.		604	664	635	105 <b>.1</b>
Av. (5	animals)	604	664	641	106.0

Table 6 (continued)

.

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef pl injecti solutio	us Wt. k ng s n	beef after aging
	ang pang bang bang bang bang bang bang bang b	e <b>m</b> .	gm.	gm.	%
Lactic	BICI acid inject:	EPS FEMORIS	MUSCLE	(continued)	
Control					
VI	181 183	607 609		604 600	99.5 98.5
Av.		608		602	99.0
VII	20 <b>4</b> 206	60 <b>6</b> 602		598 595	98 <b>.7</b> 98.8
Av.		604		59 <b>6</b>	98.8
VIII	232 23 <b>3</b>	605 607		596 602	98.5 99.2
Av.		606		599	98.8
Av. (3	animals)	606		599	98.9
IX	253 255	608 605		601 592	98 <b>.8</b> 97.8
Av.		606		596	98.3
x	276 278	<b>600</b> 608		591 597	98.5 98.2
Av.		604		594	98.4
Av. (5	animals)	606		597	98.7

÷

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
		gm.	gm.	gm.	%
	BICI	EPS FEMORIS	MUSCLE (cont	inued)	
Lactic a	cid inject:	ion (contin	ued)		an Alian Alian ang ang ang
Injected	samples				
VI	181	603	663	630	104.5
	183	<b>6</b> 0 <b>6</b>	666	620	102.3
Av.		604	664	625	103.4
VTT	204	603	663	637	105.6
	206	600	660	618	103.0
· Av.		602	662	628	104.3
VTTT	232	606	666	623	102.8
V etha Aliv aller	233	605	665	624	103.1
Av.		606	666	624	103.0
Av. (3 a	nimals)	604	664	626	103.6
IX	253	605	665	604	99.8
	255	607	667	623	102.6
Av.		606	666	614	101.2
X	276	605	665	633	104.6
	278	607	667	625	103.0
Av.		606	666	629	103.8
Av. (5 a	nimels)	605	665	624	103.1

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. bee agi	f after ng
n an		gm.	gm •	gm.	%
	BI	CEPS FEMORIS	MUSCLE (con	tinued)	a
Sodium	chloride a	nd lactic ac	aid injection		
Control	. samples				
VI	180	608		603	99.2
× ×	182	600		592	98.7
Av.		604		598	99.0
VTT	208	601		594	98.8
14 atu atu :	209	606		602	99.3
Av.		604		598	99.0
VIII	229	606		603	99.5
<i>.</i>	231	606		590	97.4
Av.		606		59 <b>6</b>	98.4
Av. (3	animals)	605		597	98.8
IX	252	603		589	97.7
	254	607		598	98.5
Av.		605		594	98.1
x	280	605		601	99.3
	281	<b>6</b> 0 <b>7</b>		605	99.7
Av.		606		603	99.5
Av. (5	animals)	605		598	98.8

Table 6 (continued)

Animal no.	Sample no.	Initial wt.	Beef plus injecting solution	Wt. beef agin	after g
		gm.	gm.	gm.	ø
	BICE	PS FEMORIS	MUSCLE (cont	tinued)	
Sodium	chloride and	lactic ac	id injection	(continued)	
Injecte	d samples	an ta an			
VI	180	604	664	656	108.6
	182	610	670	640	104.9
Av.		607	667	648	106.8
VII	208	603	663	642	106.5
	209	605	665	633	104.6
Av.		604	664	638	105.6
VIII	229	607	667	637	104.9
	231	606	666	632	104.3
Av.		606	666	634	104.6
Av. (3	animals)	606	666	640	105.7
IX	252	604	664	637	105.5
	254	604	664	629	104.1
Av.		604	664	633	104.8
X	280	608	668	648	106.6
	281	605	665	649	107.3
Av.		60 <b>6</b>	666	648	107.0
Av. (5	animals)	<b>6</b> 05	665	640	105.8

Table 7. Weight of Canned Meat and of Liquid. Weight of beef before processing; weight of meat and of liquid after processing; percentage weight of meat and of liquid based on weight of beef before processing.

Sample	Wt. before	Wei	ight after	process	ing
no.	processing	Ме	eat	Liq	uid
ungi di kan mujuniya kana ka kali ka kan ja mangangi ka	gm.	gm.	70	gm.	10
LONG	ISSIMUS DORSI	MUSCLE,	LOIN PORT	ri on	
nloride	injection				
amples					
162 188	568 570	379 392	66.7 68.8	188 174	33.1 30.5
211	568	364	64.1	199	35.0
imals)	569	378	66.5	187	32.9
234	568	376	66.2	188	33.1
260	569	373	65.6	192	33.7
nimals)	569	377	66.3	188	33.1
samples	La de la companya de				
162	570	376	66.0	192	33.7
188	572	408	71.3	158	27.6
211	569	362	63.6	203	35.7
nimals)	570	382	67.0	184	32.3
234	568	360	63.4	138	24.3
260	569	40 <b>6</b>	71.4	146	25.6
nimals)	570	382	67.1	167	29.4
	Sample no. LONG aloride samples 162 188 211 aimals) 234 260 aimals) samples 162 188 211 aimals) 234 260 aimals) 234 260 aimals)	Sample no.         Wt. before processing gm.           LONGISSIMUS DORSI           hloride injection           samples           162         568           188         570           211         568           188         570           211         568           162         569           234         568           260         569           nimals)         569           samples         162           162         570           188         572           211         569           nimals)         570           234         568           260         569           nimals)         570	Sample no.         Wt. before processing me         Weight Me           gm.         gm.         gm.           LONGISSIMUS DORSI MUSCLE,         10ride injection         10ride injection           samples         162         568         379           188         570         392         211         568         364           nimals)         569         378         234         568         376           260         569         373         376         382           162         570         376         386           260         569         373         377           samples         162         570         376           188         572         408         211         569         362           nimals)         570         382         360         360         360           234         568         360         360         362         360         360         362           nimals)         570         382         360         360         360         360           260         569         406         360         360         360         362           101         570 <t< td=""><td>Sample Nt. before processing Meat         Weight after Meat           gm.         <thgm.< th="">         gm.         gm.<td>Sample no.         Wt. before processing Meat         Weight after process mean           Image: Second second</td></thgm.<></td></t<>	Sample Nt. before processing Meat         Weight after Meat           gm.         gm. <thgm.< th="">         gm.         gm.<td>Sample no.         Wt. before processing Meat         Weight after process mean           Image: Second second</td></thgm.<>	Sample no.         Wt. before processing Meat         Weight after process mean           Image: Second

*Animals VI, VII, and VIII were steers, carcass grade Commercial, processed 65 minutes; Animal IX was a steer, carcass grade Commercial, processed 90 minutes; Animal X was a cow, carcass grade Cutter, processed 90 minutes.

- 272 -

Table 7 (continued)

Animal	Sample	Wt. before	Wei	lght aft	er proces	sing	
no.	no.	processing	Me	oat	Li	Liquid	
Ф <u>алирари (продо Вселий в Лавиларие</u> 	<b>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</b>	gm.	gm.	%	gm.	%	
	LONGISSIMUS	DORSI MUSCLE,	LOIN I	PORTION	(continue	d)	
Lactic	acid inject	tion					
Contro	l samples					4 1 1	
VI	164	568	391	68.8	176	31.0	
VII	187	570	394	69.1	174	30.5	
VIII	210	568	363	63.9	197	34.7	
Av. (3	animals)	569	383	67.3	182	32.1	
IX	236	570	378	66.3	182	31.9	
X	259	568	378	66.5	189	33.3	
Av. (5	animals)	569	381	66.9	184	32.3	
Inject	ed samples						
VI	164	569	380	66.8	188	33.0	
VII	187	570	383	67.2	186	32.6	
VIII	210	568	354	62.3	202	35.6	
Av. (3	animals)	569	372	65.4	192	33.7	
IX	236	568	365	64.3	196	34.5	
X	259	568	364	64.1	188	33.]	
Av. (5	animals)	569	369	64.9	192	33.8	

Table 7 (continued)

Animal	Sample	Wt. before	Weight af	ter processing
no.	no.	processing	Meat	Liquid
		gm •	gm. %	gm. %
	LONGISSIMUS	DORSI MUSCLE,	LOIN PORTION	(continued)
Sodium	chloride a	nd lactic acid	injection	
Contro.	l samples			
VI	163	568	387 68.1	178 31.4
VII	186	5 <b>6</b> 8	390 68.7	168 29.6
VIII	212	570	364 63.8	206 36.1
Av. (3	animals)	569	380 66.9	184 32.4
IX	235	569	366 64.3	5 194 34.1
X	258	568	372 65.5	185 32.6
Av. (5	animals)	569	376 66.1	186 32.8
Inject	ed samples			
vī	163	569	385 67.7	185 32.5
VII	186	569	384 67.5	184 32.3
VIII	212	570	353 61.9	202 35.4
Av. (3	animals)	569	374 65.7	190 33.4
IX	235	568	355 <b>62.5</b>	210 37.0
X	258	569	395 69.5	5 156 27.4
Av. (5	animals)	569	374 65.6	187 32.9

Table 7 (continued)

Animal	Sample	Wt. before	We:	lght after	p <b>rocess</b>	ing
no.	no.	processing	Me	eat	Lic	uid
	1	gm.	gm.	%	gm.	%
а 1 	LON	GISSIMUS DORSI	MUSCLE,	RIB PORTI	ON	
Sodium	chloride	injection				
Control	samples		4			
VI IIV IIIV	167 189 214	568 573 570	372 391 378	65.5 68.2 66.3	195 165 181	34.3 28.8 31.8
Av. (3	animals)	570	380	66.7	180	31.6
IX	239	570	375	65.8	193	33.8
X	261	568	35 <b>6</b>	62.7	135	23.8
Av. (5	animals)	570	374	65.7	174	30.5
Injecte	d sample	8. 8				
IV IIV IIIV	167 189 214	571 573 570	384 384 357	67.2 67.0 62.6	188 159 209	32.9 27.7 36.7
Av. (3	animals)	571	375	65.6	185	32.4
IX	239	569	368	64.7	191	33.6
X	261	570	356	62.4	191	33.5
Av. (5	animals)	571	370	64.8	18 <b>8</b>	32.9

Table 7 (continued)

Animal	Sample	Wt. bef	ore	Wei	ight aft	cer process	ing
no.	no.	process	ing	Me	eat	Liq	uid
. <b></b>		gm.		gm.	%	gm.	- <i>6</i> /0
	LONGISSIMU	S DORSI	MUSCLE,	RIB I	PORTION	(continued	)
Lactic	acid injec	tion		х н. •			
Contro	l samples	· .					
VI VII VIII	165 190 215	570 571 570		368 424 379	64.6 74.2 66.5	202 143 192	35.4 25.0 33.7
Av. (3	animals)	570		390	68.4	179	31.4
IX	237	568		364	64.1	197	34.7
X	262	569		383	67.3	172	30.2
Av. (5	animals)	570		384	67.3	181	31.8
Inject	ed samples						
VI VII VIII VIII	165 190 215	570 568 569		363 390 359	63.7 68.7 63.1	200 168 201	35.1 29.6 35.3
Av. (3	animals)	569	· .	371	65.2	190	33.3
IX	237	569		343	60.3	213	37.4
X	262	569		363	63.8	148	26.0
Av. (5	animals)	569		364	63.9	186	32.7

- 277 -

Table 7 (continued)

Animal	Sample	Wt. befor	e	Weig	ght after	process	ing
no.	no.	processin	g	Mea	at	Liq	biu
	al an faith an an an an an an Anna an A An an Anna an An	gm.		gm.	%	gm.	%
]	LONGISSIMU	S DORSI MUS	CLE,	RIB POP	RTION (cc	ontinued)	
Sodium	<u>chloride</u>	and lactic	acid	injecti	on	•	
Control	L samples						
IV IIV IIIV	166 191 213	570 571 570		<b>378</b> 3 <b>87</b> 383	66.3 67.8 67.2	191 178 185	33.5 31.2 32.4
Av. (3	animals)	570		383	67.1	185	32.4
IX	238	569		374	65.7	187	32.9
X	263	570		378	66.3	168	29.5
Av. (5	animals)	570		380	66.7	182	31.9
Thieste	d samples						. ž
VI VII VIII	166 191 213	570 571 570		388 394 359	68.1 69.0 63.0	183 178 208	32.1 31.2 36.5
Av. (3	animals)	570		380	66.7	190	33.3
IX	238	569		356	62.6	20 <b>6</b>	36.2
X	263	569		385	67.7	153	26.9
Av. (5	animals)	570		376	66.1	186	32.6

Table 7 (continued)

Animal	Sample	Wt. bef	ore	We	eight	afte	r pr	0008	sing
no.	no.	process	ing	-	Meat			Li	quid
		gm.	anna an cenite thiter	gm	• 9	7 5		gm.	<i>fo</i>
	PS	SOAS MAJOR	AND	PSOAS I	MINOR	MUSC	LES		
Sodium	<u>chloride</u>	injection	· .	. *					
Control	L samples	an a							
VI	168	571		414	1 72	2.5		155	27.1
VII	193	568		421	5 74	1.8		138	24.3
VIII	218	568		379	9 66	5.7	1	189	33.3
Av. (3	animals)	569		400	5 71	1.3	•	161	28.2
IX	240	570		42	2 74	L.O		143	25.1
X	265	570		37	3 61	5.4		171	30.0
Av. (5	animals)	569		40	3 7(	.7		15 <b>9</b>	28.0
Injecte	d sample:	5. 5.							
VT	168	572		38	3 6'	7.8		178	31.1
VIT	193	569		42	3 74	1.3		145	25.5
VIII	218	568		35	9 63	3.2		207	36.4
Av. (3	animals)	570		39(	68	3.4		177	31.0
IX	240	570		38	7 6'	7.9		161	28.2
X	265	568		36	2 <b>6</b>	3.7		162	28.5
Av. (5	animals)	569		38-	4 6'	7.4		171	29.9

Table 7 (continued)

Animal	Sample	Wt. before	Weig	ght after	r process	ing
no.	no. processing		Mea	at	Lic	luid
<b>egeni ken stiksten Turnun i istant</b> er S	ann ag a dhuanga na anns a san ta bhail dhaonn an san dhaile anns an san anns an san anns an san anns an san a N	gm .	gm.	%	gm.	%
	PSOAS MAJ	OR AND PSOAS	MINOR MUS	DLES (con	ntinued)	
Lactic	acid injec	tion	•			
Contro.	l samples					
VI VII VII	169 194 216	571 568 569	418 436 413	73.2 76.8 72.6	159 127 151	27.8 22.4 26.5
Av. (3	animals)	569	422	74.2	146	25.6
IX	241	5 <b>6</b> 8	408	71.8	153	26.9
X	266	568	383	67.4	238	41.9
Av. (5	animals)	569	412	72.4	166	29.1
Inject	ed samples					
VI VII VIII	169 194 216	571 570 568	379 369 380	66.4 64.7 66.9	186 189 182	32 <b>.6</b> 33.2 32.0
Av. (3	animals)	570	376	66.0	186	32.6
IX	241	568	385	67.8	149	26.2
X	266	568	353	62.1	120	21.1
Av. (5	animals)	569	373	65.6	165	29.0

Table 7 (continued)

Animal	Sample	Wt. before	Weight after	processing
no.	no.	processing	Meat	Liquid
		gm.	8 <b>m.</b> %	gm. %
	PSOAS MAJ	FOR AND PSOAS MI	NOR MUSCLES (con	tinued)
Sodium	<u>chloride</u>	and lactic acid	injection	
Control	l samples			
VI	170	570	396 69.5	175 30.7
VII	192	568	415 73.2	142 25.0
VIII	217	570	403 70.7	153 26.8
Av. (3	animals)	569	405 71.1	157 27.5
IX	242	568	382 67.2	151 26.6
x	264	570	393 68.9	139 24.4
Av. (5	animals)	569	398 69.9	152 26.7
Thiect	ad semples			
1110000	170	570	301 68.4	183 32.0
UTT	100	571	414 72.5	141 24.7
VIII	217	571	380 66.5	175 30.6
Av. (3	animals)	571	395 69.1	166 29.1
IX	242	569	373 65.6	175 30.8
X	264	568	363 63.9	180 31.7
Av. (5	animals)	570	384 67.4	171 30.0
Table 7 (continued)

Animal	Sample	Wt. before	Weig	ght after	process	ing
no.	no.	processing	Mea	at	Liq	uid
	un die Station in Station and Station and Stational Station and Stational Stational Stational Stational Station	gm.	gm.	%	gm.	%
		SEMTTENDING	OSUS MUS	SCLE		
		துக்கும் ஆல்லர் அம்பர் அம்புக் குக்கும் அன்ற அற்றை அந்துர் அன்றார். அன்றா அன்றா அன்றா அன்றா கூ				
Sodium	<u>chloride</u>	injection				
Control	samples	na series de la construcción de la Transmission de la construcción de l Transmission de la construcción de				
VI	172	568	369	65.0	198	34.8
VII	197	569	405	71.2	162	28.5
VIII	219	570	371	65.1	198	34.7
Av. (3	anima <b>ls</b> )	569	382	67.1	18 <b>6</b>	32.7
IX	244	570	369	64.7	183	32.1
X	269	568	363	63.9	205	36.1
Av. (5	animals)	569	375	66.0	189	33.2
Injecte	d samples	8				
VI	172	571	358	62.7	201	35.2
VII	197	570	384	67.4	187	32.8
VIII	219	570	374	65.6	170	29.8
Av. (3	animals)	570	372	65.2	186	32.6
IX	244	568	360	63.4	177	31.2
X	269	568	377	66.4	178	31.3
Av. (5	animals)	569	371	65.1	183	32.1

*

Table 7 (continued)

Animal	Sample	Wt. before	Weig	ht after	process	sing
no.	no.	processing	Mes	t	Lic	ļuid
		gm.	gm.	%	gm.	%
	SE	MITENDINOSUS MU	SCLE (cc	ontinued)		
Lactic	acid inje	ction				
Control	samples					
VI	173	568	363	63.9	186	32.7
VII	195	568	375	66.0	187	32.9
VIII	220	568	362	63.7	195	34.3
Av. (3	animals)	568	367	64.5	189	33.3
IX	245	568	377	66.4	132	23.2
X	267	569	362	63.6	203	35.7
Av. (5	animals)	568	368	64.7	181	31.8
Injecte	d samples					
VI	173	568	401	70.6	145	25.5
VII	195	569	372	65.4	191	33.6
VIII	220	568	360	63.4	203	35.7
Av. (3	animals)	5 <b>6</b> 8	378	66.5	180	31.6
IX	245	568	366	64.4	179	31.5
X	267	568	347	61.1	170	29.9
Av. (5	animals)	568	369	65.0	178	31.2

Table 7 (continued)

Animal	Sample	Wt. before	Weight after	processing	r
no.	no.	processing	Meat	Liquid	l
<b>The State of State o</b>	eine alabai ya seti ani sa susibili sa <b>k</b> aking	gm.	gm. %	gm. %	,
	SI	EMITENDINOSUS MU	SCLE (continued)		
Sodium	chloride	and lectic scid	injection		
DOULUI	<u>CI1201 100</u>	alla racorto acta	<u>Angover on</u>		
Control	L samples				
VI	171	568	372 65.5	193 34	.0
VII	196	569	380 66.8	189 33	5.2
VIII	221	568	369 65.0	187 32	.9
Av. (3	animals)	568	374 65.8	190 33	5.4
IX	243	569	364 64.0	194 34	.1
X	268	568	365 64.3	204 35	i <b>₊</b> ′9
Av. (5	animals)	568	370 65.1	193 34	.0
Injecte	ed sample:	8			
VT	171	570	370 64.9	122 21	.4
VIT	196	569	365 64.1	201 35	5.3
VIII	221	568	355 62.5	214 37	1.7
Av. (3	animals)	569	363 63.8	179 31	5
IX	243	568	370 65.1	170 29	.9
X	268	570	359 63.0	187 32	8.8
Av. (5	animals)	569	364 63.9	179 31	1.4

Table 7 (continued)

Animal	Sample	Wt. before	Weig	Weight after		sing
no.	no.	processing	Mee	ıt	Lic	luid
		gm.	gm.	%	gm.	%
		SEMIMEMBRAN	Iosus Mus	SCLE		
Sodium	<u>chloride</u>	injection				
Control	L samples					
VI	177	570	363	63.7	208	36.5
	179	568	374	65.8	198	34.8
Av.		569	368	64.8	203	35.6
VTT	100	568	355	62.5	213	37.5
• • • • • •	200	569	360	63.3	204	35.8
Av.		568	358	62.9	208	36.6
VIII	222	568	367	64.6	200	35.2
	226	571	355	62.2	213	37.3
Av.		570	361	63.4	206	36.2
Av. (3	animals)	569	362	63.7	206	36.1
IX	249	569	355	62.4	196	34.4
	251	568	367	64.6	199	35.0
Av.		568	361	63.5	198	34.7
x	271	568	327	57.6	171	30.1
	272	570	330	57.9	238	41.8
Av.		569	328	57.8	205	36.0
Av. (5	animals)	569	355	62.5	204	35.8

.

Table 7 (continued)

Animal	Sample	Sample Wt. before		Weight after processing			
no.	no.	processing	Meat		Lic	Liquid	
		gm.	gm.	%	gm.	%	
an Angelon († 1997) 1997 - Angelon († 1997) 1997 - Angelon († 1997) 1997 - Angelon († 1997) 1997 - Angelon († 1997)	S	ENI MEMBRANOSUS	MUSCLE	(continue	d)		
Sodium	chloride	injection (con	tinued)		n an the second se		
Injected	d samples						
VI	177	571	345	60.4	226	39.6	
	179	568	352	62.0	217	38.2	
Av.		570	348	61.2	222	38.9	
VII	199	568	346	60.9	220	38.7	
<b>Y A</b>	200	570	350	61.4	216	37.9	
Av.	·	569	348	61.2	218	38.3	
VIII	222	570	350	61.4	221	38.8	
а., .	226	570	330	57.9	221	38.8	
Av.		570	340	59.6	221	38.8	
Av. (3	animals)	570	345	60.7	220	38.7	
ТХ	249	568	342	60.2	209	36.8	
	251	568	345	60.7	20 <b>6</b>	36.3	
Av.		568	344	60.4	208	36.6	
X	271	568	344	60.6	219	38.6	
	272	570	324	56.8	223	39.1	
Av.		569	334	58.7	221	38.8	
Av. (5	enimels)	569	343	60.2	218	38.3	

Table 7 (continued)

Animal	Sample	Wt. before	Wei	cht afte	r process	ing
no.	no.	processing	Mes	Meat		uid
		gm.	gm.	z	gm.	%
	SEA	II MEMBRAN OSUS	MUSCLE (	continue	(5	
Lactic	acid injec	tion				
Control	L samples					
VI	175	568	374	65.8	190	33.4
	176	570	358	62.8	205	36.0
Av.		569	366	64.3	198	34.7
VII	198	568	364	64.1	200	35.2
	202	570	362	63.5	205	36.0
Av.		569	363	63.8	202	35.6
VIII	225	568	345	60.7	223	39.3
	227	568	358	63.0	212	37.3
Av.		568	352	61.8	218	38.3
Av. (3	animals)	569	360	63.3	206	36.2
тх	247	568	348	61.3	215	37.8
	248	569	359	63.1	162	28.5
Av.		568	354	62.2	188	33.2
X	270	569	318	55.9	233	40.9
	274	569	328	57.6	231	40.6
Av.		569	323	56.8	232	40.8
Av. (5	animals)	569	352	61.8	208	36.5

Table 7 (continued)

Animal	Sample	Wt. before	Weig	ght after	er processing		
no.	no.	processing	Meat		Liquid		
	<b></b>	gm.	gm.	%	gm.	%	
	SEM	IMEMBRANOSUS M	USCLE (	continued	)		
Lactic a	cid injec	tion (continue	d)				
Injected	samples						
VI	175	569	376	66.1	191	33.6	
	176	568	350	61.6	214	37.7	
Av.		568	363	63.8	202	35.6	
VII	198	568	342	60.2	217	38.2	
, a	202	570	358	62.8	209	36.	
Av.		569	350	61.5	213	37.4	
VIII	225	568	333	58.6	231	40."	
	227	570	351	61.6	218	38.9	
Av.		569	342	60.1	224	39.4	
Av. (3 s	inimals)	569	352	61.8	213	37.1	
IX	247	568	343	60.4	215	37.8	
	248	569	342	60.1	180	31.0	
Av.		568	342	60.2	198	34.	
x	270	570	302	53.0	217	38.	
	274	570	316	55.4	174	30.1	
Av.		570	309	54.2	196	34.3	
Av. (5 e	inimals)	569	341	60.0	207	36.	

Table 7 (continued)

Animal	Sample	Wt. before	Weig	ght after	process	sing	
no.	no.	processing	Mea	Meat		Liquid	
	and a general constraint and a second se	gm.	gm.	%	gm.	%	
	SEMI	MEMBRANOSUS M	USCLE (	ontinued	1)		
Sodium	chloride an	d lactic acid	injecti	on			
Control	samples						
VI	174	570	368	64.6	198	34.7	
	178	568	363	63.9	208	36.6	
Av.	4	569	366	64.2	203	35.6	
VTT	201	568	363	63.9	204	35.9	
¥	203	568	368	64.8	202	35.6	
Av.	4	568	366	64.4	203	35.8	
VIII	223	571	352	61.6	219	38.4	
	224	570	347	60.9	218	38.2	
Av.	2	570	350	61.2	218	38.3	
Av. (3	animals)	569	361	63.3	208	36 <b>.6</b>	
IX	246	568	364	64.1	177	31.2	
•	250	568	355	62.5	211	37.1	
Av.		568	360	63.3	194	34.2	
x	273	568	332	58.4	237	41.7	
Ŀ.	275	568	336	59.2	209	36.8	
Av.		568	334	58.8	223	39.2	
Av. (5	animals)	569	355	62.4	208	36.6	

Table 7 (continued)

Animal	Sample	Wt. before	Weight	after proces	sing
no.	no.	processing	Meat	L1	quid
		gm.	gm.	6 gm.	%
anton a substantia Antonio de la constantia Antonio de la constantia	SE	MI MEMBRAN OSUS	MUSCLE (con	tinued)	
Sodium d	hloride	and lactic aci	d <u>injection</u>	(continued)	
Injected	samples			en e	•
VI	174	572	366 6	4.0 209	36.5
• •	178	568	344 6	0.6 222	39.1
Av.		570	355 6	2.3 216	37.8
VII	201	569	352 6	1.9 216	38.0
	203	568	375 6	6.0 190	33.4
Av.		568	364 6	4.0 203	35.7
VIII	223	568	345 6	0.7 219	38.6
	224	570	336 5	8.9 218	38.2
Av.		569	340 5	9.8 218	38.4
Av. (3 a	animals)	569	353 6	2.0 212	37.3
IX	246	570	353 6	1.9 170	29.8
	250	569	34 <b>6</b> 6	0.8 222	39.0
Av.		570	350 6	1.4 196	34.4
X	273	568	326 5	7.4 217	38.2
	275	508	<u> </u>	0.0 172	30.2
Av.		568	330 5	8.0 194	34.2
Av. (5	animals)	569	348 6	1.1 205	36.]

Table 7 (continued)

Animal	Sample	Wt. before	e <u>Weight after</u>		r process	sing
no.	no.	processing	Mea	at	L1	luid
-	an tanan an san tanan ang ang tang tang tang tang tan	gm.	gm.	%	gm.	%
	а	BICEPS FEM	ORIS MUS	SCLE		
Sodium	<u>chloride</u>	injection			ана сала Спорти сала сала сала сала сала сала сала сал	
Control	l samples					
VI	184	568	401	70.6	170	29.9
a -	185	569	394	69.2	174	30.6
Av.		568	398	69.9	172	30.2
VTT	205	569	392	68.9	180	31.6
	207	569	373	65.6	199	35.0
Av.		569	382	67.2	190	33.3
VIII	228	570	383	67.2	187	32.8
ч Р	230	570	344	60.4	210	36.8
Av.		570	364	63.8	198	34.8
Av. (3	animals)	569	381	67.0	187	32.8
IX	256	568	362	63.7	200	35.2
	257	568	359	63.2	204	35.9
Av.		568	360	63.4	202	35.6
X	277	570	356	62.4	212	37.2
1	279	570	345	60.5	227	39.8
Av.		570	350	61.5	220	38.5
Av. (5	animals)	569	371	65.2	196	34.5

Table 7 (continued)

Animal	Sample Wt. before		Weig	Weight after processing			
no.	no.	processing	Mea	ıt	Lic	luid	
ander allen ander and and and an		gm.	gm.	h	gm.	%	
	BI	CEPS FEMORIS MU	SCLE (co	ontinued)	ν.		
Sodium (	chloride f	injection (cont	inued)				
Injected	d samples						
VI	184 185	568 568	360 373	63.4 65.7	205 195	36.1 34.3	
Av.		568	366	64.6	20 <b>0</b>	35.2	
VII	205 207	569 568	367 350	64.5 61.6	204 221	35.8 38.9	
Av.	±.	568	358	63.0	212	37.4	
VIII	228 230	570 570	347 342	60.9 60.0	22 <b>3</b> 2 <b>27</b>	39.1 39.8	
Av.		5 <b>7</b> 0	344	60.4	225	39.4	
Av. (3	animals)	569	356	62.7	212	37.3	
IX	256 257	569 568	366 359	64.3 63.2	197 207	34.6 36.4	
Av.		568	363	63.8	202	35.5	
X	277 279	568 570	360 337	<b>63.4</b> 59.1	180 241	31.7 42.3	
Av.		569	348	61.2	210	37.0	
Av. (5	animals)	569	35 <b>6</b>	62.6	210	36.9	

Table 7 (continued)

Animal	Sample	Wt. before	Weig	ght after	process	sing
no.	no.	processing	Mes	ıt	Lic	luid
<b></b>		gm.	gm.	%	gm.	%
	BI	CEPS FEMORIS MU	SCLE (co	ontinued)	<b>)</b> .	
Lactic	acid injed	otion				
Control	. samples					
VI	181 183	569 570	372 364	65.4 63.8	19 <b>6</b> 20 <b>7</b>	34.4 36.3
Av.		570	368	64.6	202	35.4
VII	204 20 <b>6</b>	568 568	391 379	68.8 66.7	178 192	31.3 33.8
Av.		568	385	67.8	185	32.6
VIII	232 233	570 569	354 357	62.1 62.7	207 212	36.3 37.2
Av.		570	356	62.4	210	36.8
Av. (3	animals)	569	370	64.9	199	34.9
IX	253 255	570 569	367 364	64.4 64.0	188 205	33.0 36.0
Av.		570	366	64.2	197	34.5
X	276 278	569 570	375 344	65.9 60.4	195 229	34.3 40.2
Av.		570	360	63.2	212	37.2
Av. (5	animals)	570	367	64.4	201	35.3

Table 7 (continued)

Animal	Sample	Wt. before	Weig	cht after	process	sing
no.	no.	processing	Mea	at	Li	quid
and Annine a	national and graning and any section of the section of the section of the	gm.	gm.	%	gm.	%
	DT	OP DO DUMARTO MI	SOTE LA	ntinued)	м - 2	
	DT (	VISIO FISHOLLIO MO	00700 / 00	)11 0 <b>1 11 11 10</b> 0 0 <i>j</i>		
Lactic s	cid inje	ction (continue	đ)			
Intected	samples					
VT	181	570	343	60.2	223	39.1
. <b></b>	183	568	340	59.8	227	40.0
Av.		569	342	60.0	225	39.6
VII	204	569	370	65.0	196	34.4
	206	568	354	62.3	214	37.7
Av.	• * * * *	568	362	63.6	205	36.0
VIII	232	569	348	61.2	220	38.7
	233	569	350	61.5	216	38.0
Av.		569	349	61.4	218	38.4
Av. (3 a	inimals)	569	351	61.7	216	38.0
IX	253	568	345	60.7	208	36.6
-	255	568	337	59.3	227	40.0
Av.		568	341	60.0	218	38.3
x	276	569	348	61.2	222	39.0
	278	569	321	56.4	251	44.1
Av.		569	335	58.8	236	41.6
Av. (5 a	animals)	569	346	60.8	220	38.8

Table 7 (continued)

Animal	Sample	Wt. before	Weig	zht after	process	ing
no.	no.	processing	Mea	at	Liq	uid
i an	ar na an	gn.	gm.	ħ	gm.	%
۰. ۱	BIC	EPS FEMORIS MU	SCLE (co	ontinued)	· · · · · · · ·	
()	ablant da a	na lootto cota	tutoobi			
SOULUM	curoride a	nd lacere acru	TUJacr			
Control	samples					
VI	180	568	417	73.4	140	24.6
	182	569	362	63.6	181	31.8
Av.		568	390	68.5	160	28.2
VTT	208	568	382	67.2	194	34.2
	209	569	385	67.7	199	35.0
Av.		568	384	67.4	196	34.6
VIII	229	569	358	62.9	210	36.9
	231	570	370	64.9	199	34.9
Av.	. *	570	364	63.9	204	35.9
Av. (3	animals)	569	379	66.6	187	32.9
IX	252	569	376	66.1	187	32.9
	254	570	358	62.8	213	37.4
Av.		570	367	64.5	200	35.2
X	280	569	355	62.4	193	33.9
	281	568	365	64.3	205	36.1
Av.		568	360	63.4	199	35,0
Av. (5	animals)	569	373	65.5	192	33.8

Table 7 (continued)

Animal	Sample	Wt. before	Weight at	ter processing
no.	no.	processing	Meat	Liquid
		gm •	gm. %	gm. %
r • .	BI	CEPS FEMORIS MU	ISCLE (continu	16d)
Sodium	<u>chloride</u>	and lactic acid	injection (	continued)
Injecte	d samples			
VI	180	570	403 70.'	7 159 27.9
× .	182	570	368 64.0	3 203 35.6
Av.		570	386 67.0	3 181 31.8
VII	208	569	382 67.3	186 32.7
	209	568	378 66.1	5 188 33.1
Av.		568	380 66.8	3 187 32.9
VIII	229	571	354 62.0	220 38.5
	231	570	349 61.2	226 39.6
Av.		570	352 61.0	3 223 39.0
Av. (3	animals)	569	373 65.3	3 197 34.6
TX	252	569	363 63.8	3 185 32.5
	254	570	363 63.	7 197 34.6
Av.		570	363 63.6	B <b>191 33.6</b>
x	280	568	369 65.0	203 35.7
	281	569	364 64.0	0 195 34.3
Av.		568	366 64.	5 199 35.0
Av. (5	animals)	569	369 64.9	9 196 34.5

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI	, VII, AND VIII	
Total	35	111.2222	
Animals	2	2.9305	1.4652
Muscles	5	32.2222	6.4444
Error (a)	10	26.5695	2.6570
Treatments	1	36.0000	36.0000**
T x M	5	3.0000	.6000
Error (b)	12	10.5000	.8750
	ANIMAI	LS IX AND X	
Total	23	388.8333	
Animals	1	273.3750	273.3750**
Muscles	5	66.9583	13.3917
Error (a)	5	17.2500	3.4500
Treatments	1	26.0416	26.0416**
T x M	5	4.0834	.8167
Error (b)	6	1.1250	.1875

Table 8. Analysis of Variance of Scores for Flavor of Canned Beef. Sodium chloride injection.

Table	9.	Analysis of	Variance	of Scores	for Flavor of
		Canned Beef.	Sodium	chloride (	and lactic acid
		injection.			
				•	

Source of variation	Degrees of freedom	Sum of squares	Mean square
an an an an Anna an An Anna an Anna an	an An an	n 1990 - Angeler Angeler, angeler	$(t, t) \in L^{2}(\mathbb{R}^{n})$
	ANIMALS VI	, VII, AND VIII	
Total	35	94.2431	
Anima <b>ls</b>	2	.5973	0.2986
Muscles	5	22.3681	4.4736
Error (a)	10	30.6527	3.0653
Treatments	and a state of the state of the	25.8403	25.8403 ^{**}
T x M	5	10.2014	2.0403**
Error (b)	12	4.5833	.3819
	ANIMAL	S IX AND X	na se statistica en el N
Total	23	346.8333	
Animals	an an an <b>1</b> 7 an	234.3750	234.3750**
Muscles	<b>.</b>	28.2083	5.6417
Error (a)	5	41.5000	8.3000
Treatments	l	30.3750	30.3750 ^{**}
T x M	5	6.5000	1.3000
Error (b)	6	5.8750	.9792

.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI	, VII, AND VIII	
Total	35	59.1875	
Animals	2	0.3750	0.1875
Muscles	5	22.8125	4.5625
Error (a)	10	17.6250	1.7625
Treatments	1	0.1736	.1736
T x M	5	7.7014	1.5403
Error (b)	12	10.5000	.8750
	ANIMAI	S IX AND X	
Total	23	350.8333	
Animals	1	247.0416	247.0416**
Muscles	5	47.2083	9.4417
Error (a)	5	44.8334	8.9667
Treatments	1	.3750	.3750
TXM	5	3.0000	.6000
Error (b)	6	8.3750	1.3958

Table 10. Analysis of Variance of Scores for Flavor of Canned Beef. Lactic acid injection.

.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI,	VII, AND VIII	
Total	35	685.5764	
Animals	2	12.0972	6.0486
Muscles	5 <b>5</b>	355.3681	71.0736*
Error (a)	10	164.2361	16.4236
Treatments	1	79.5070	<b>79.5070^{**}</b>
T x M	5	26.5346	5.3069
Error (b)	12	47.8334	3.9861
	ANIMALS	IX AND X	
Total	23	251.9062	
Animals	1	5.5104	5.5104*
Muscles	5	147.9687	29.5937**
Error (a)	5	2.3021	•4604
Treatments	1	71.7604	71.7604**
ТхМ	5	10.8021	2,1604
Error (b)	6	13.5625	2.2604

Table 11. Analysis of Variance of Scores for Tenderness of Canned Beef. Sodium chloride injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI.	VII. AND VIII	
Total	35	378,3056	
Animals	2	12,1806	6.0903
Muscles	5	185.1389	37.0278*
Error (a)	10	68,7361	6.8736
<b>Freat</b> ments	en e	84,0278	84.0278**
T x M	5	6,8056	1,3611
Error (b)	12	21.4166	1.7847
	ANIMALS	IX AND X	
Total	23	243,9896	
Animals	n de <b>la</b> constante	.5104	.5104
Muscles	5	100,8021	20.1604**
Error (a)	5	9.0521	1.8104
Treatments	1	102.0938	102,0938**
T x M	5	26.2187	5.2437*
Error (b)	6	5.3125	.8854

Table 12. Analysis of Variance of Scores for Tenderness of Canned Beef. Sodium chloride and lactic acid injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI	, VII, AND VIII	
Total	35	555.7222	• •
Animals	2	70.6805	35.3402**
Muscles	5	421.5555	84.3111**
Error (a)	10	35.7362	3.5736
Treatments	1	0.6972	0.6972
T x M	5	12.1362	2.4272
Error (b)	12	14.9166	1.2430
	ANIMAI	S IX AND X	
Total	23	190.9896	
Animals	1	3.0104	3.0104
Muscles	5	142.5521	28.5104*
Error (a)	5	27.0521	5.4104
Treatments	1	.5104	.5104
T x M	5	9.3021	1.8604
Error (b)	6	8.5625	1.4271

Table 13. Analysis of Variance of Scores for Tenderness of Canned Beef. Lactic acid injection.

variation	Degrees of freedom	Sum of squares	Mean square
in an	n gan gan gan an a	a na mana kao amin'ny fisiona dia mandritry indre a siny drana si ana	******
	ANIMALS VI,	VII, AND VIII	
Total	35	257.74	
Animals	2	6.51	3.255
Muscles	5	105.53	21.106
Error (a)	10	79.20	7.920
Treatments	1	29.34	29.34**
MXT	5	13.37	2.674
Err <b>or</b> (b)	12	23.79	1.983
	ANIMALS	IX AND X	
Total	23	126.74	
Animals	1	3.01	3.01
Muscles	5	51.80	10.360
Error (a)	5	21.31	4.262
Treatments	1	19.26	19.26
MXT	5	4.56	0.912
Error (b)	6	26.80	4.467

Table 14. Analysis of Variance of Scores for Juiciness of Canned Beef. Sodium chloride injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI	, VII, AND VIII	
Total	35	233.24	
Animals	2	2.05	1.025
Muscles	5	132.53	26.506 <b>**</b>
Error (a)	10	34.79	3.479
Treatments	1	9.56	9.56*
M x T	5	37.98	7.596**
Error (b)	12	16.33	1.361
	ANIMAI	S IX AND X	
Total	23	113.24	
Animals		1.26	1.26
Muscles	5	33.55	6.710
Error (a)	5	32.56	6.512
Treatments	1	17.51	17.51*
M x T	5	11.81	2.362
Error (b)	6	16.55	2.758

Table 15. Analysis of Variance of Scores for Juiciness of Canned Beef. Sodium chloride and lactic acid injection.

Interiment interimentation and a second in the second side of the second side of the second side of the second	The full start of the		
Source of variation	Degrees of freedom	Sum of squares	Mean square
		n an bha ann an tha an an tha an an tha an	de Rind Martin and Statistic Construction and an and a state of the state of the state of the state of the stat
	ANIMALS VI,	VII, AND VIII	
Total	35	275.22	
Animals	2	25.43	12.715
Muscles	5	183,80	36.760**
Error (a)	10	37.99	3.799
Treatment	1	0.25	0.25
MxT	5	8.67	1.734
Error (b)	12	19.08	1.590
	ANIMALS	5 IX AND X	
Total	23	175.33	
Animals		2.04	2.04
Muscles	5	91.71	18.342
Error (a)	5	45.83	9.166
Treatments	1	1.04	1.04
M x T	5	4.08	0.816
Error (b)	6	31.08	5.180

Table	16.	Analysis	of	Va	riance	of	Sc	ores	for	Juiciness	of
		Canned Be	ef.		Lactic	aci	ĩđ	injec	ction	1.	

Source of variation	Degrees of freedom	Sum of squares	Mean square	
	ANIMALS VI	I, VII, AND VIII		
Total	35	681.4722		
Animals	2	11.7222	5.8611	
Muscles	5	337.1389	67.4278*	
Error (a)	10	138.6111	13.8611	
Treatments	1	106.7778	106.7778**	
T x M	5	40.8888	8,1778	
Error (b)	12	46.3334	3.8611	
	ANIMAI	LS IX AND X		
Total	23	262.4583		
Animals	1	37.5000	37.5000*	
Muscles	5	113.5833	22.7167*	
Error (a)	5	16.1250	3.2250	
Treatments	1	84.3750	84.3750**	
T x M	5	9.2500	1.8500*	
Error (b)	6	1.6250	0.2708	

Table 17. Analysis of Variance of Scores for Texture of Canned Beef. Sodium chloride injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square
	ANIMALS VI,	VII, AND VIII	
Total	35	492.50	
Animals	2	4.50	2.25
Muscles	5	263.00	52 <b>.</b> 60**
Error (a)	10	74.00	7.40
Treatments	1	106.78	106.78**
T x M	5	18.22	3.6440
Error (b)	12	26.00	2.1667
			,
	ANIMALS	S IX AND X	
Total	23	265.4583	
Animals	1	42.6666	42.666 <b>6**</b>
Muscles	5	87.8333	17.5667*
Error (a)	5	12.7084	2.5417
Treatments	1	100.0416	100.0416**
T x M	5	10.3334	2.0667
Error (b)	6	11.8750	1.9792

Table 18. Analysis of Variance of Scores for Texture of Canned Beef. Sodium chloride and lactic acid injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square	
***************************************				
	ANIMALS VI	, VII, AND VIII		
Total	35	546.7431	•	
Animals	2	75.3473	37.6736**	
Muscles	5	406.5348	81.3070**	
Error (a)	10	41.2360	4.1236	
Treatments	1	0.8403	0.8403	
T x M	5	12.5347	2.5069	
Error (b)	12	10.2500	0.8542	
	ANIMAI	S IX AND X		
Total	23	262.8333		
Animals	1	51.0416	51.0416*	
Muscles	5	154.2083	30.8417*	
Error (a)	5	27.8334	5.5667	
Treatments	1	3.3750	3.3750	
T x M		2.5000	.5000	
Error (b)	6	23.8750	3.9792	

Table 19. Analysis of Variance of Scores for Texture of Canned Beef. Lactic acid injection.

Source of variation	Degrees of freedom	Sum of squares	Mean squa <b>re</b>				
			s. 				
	ANIMALS VI	, VII, AND VIII					
Total	35	1349.4097					
Animals	2	8.1805	4.0902				
Muscles	5	790.3680	158.0736**				
Error (a)	10	211.7362	21.1736				
Treatments	1	37.0069	37.0069				
T x M	5	185.7015	37.1403*				
Error (b)	12	116.4166	9.7014				
	ANIMAL	S IX AND X					
Total	23	1168.24					
Animals	1	162.76	162.76**				
Muscles	5	658.31	131.66**				
Error (a)	5	24.54	4.908				
Treatments	1	10.01	10.01				
T x M	5	100.79	20.16				
Error (b)	6	211.83	17.65				

Table 20. Analysis of Variance of Scores for Slicing Quality of Canned Beef. Sodium chloride injection.

Source of variation	Degrees of freedom	Sum of squares	Mean square	
	። ል ዓያም ያደለ ጉሥም - ዓምም	<b></b>		
	ANIMALS VI	, VII, AND VIII		
Total	35	985.00		
Animals	2	84.50	42.24	
Muscles	5	557.3333	111.4667**	
Error (a)	10	130.6667	13.0667	
<b>Treatments</b>	1	1.3611	1.3611	
T x M	5	37.1389	7.4278	
Error (b)	12	174.0000	14.5000	
•	ANIMAI	S IX AND X		
Total	23	1138.41		
Animals	1.	207.10	207.10*	
Muscles	5	529.72	105.94	
Error (a)	5	105.22	21.04	
Treatments	1	21.10	21.10	
T x M	5	110.97	22.19	
Error (b)	6	164.30	27.38	

Table 21. Analysis of Variance of Scores for Slicing Quality of Canned Beef. Sodium chloride and lactic acid injection.

* - Significant.
** - Highly significant.

- 309 -

Source of variation	Degrees of freedom	Sum of squares	Mean square	
		nan har yn hennin 201 awn f fellin aw be eu na ym eu wern yn fel fel fan aan han fan hen yn na		
۰. ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	ANIMALS VI,	VII, AND VIII		
Total	35	1477.0000	$\frac{1}{2} = \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \right] \right] \right]$	
Animals	2	97.1250	48.5625	
Muscles	5	820.0000	164.0000*	
Error (a)	10	354.1250	35.4125	
Treatments	1	5.4444	5.4444	
T x M	5	79.5556	15.9111	
Er <b>ror</b> (b)	12	120.7500	10.0625	
	ANIMALS	IX AND X		
Total	23	1093.74		
Animals	1	184.26	184.26*	
Muscles	5	691.57	138.31*	
Error (a)	5	79.04	15.81	
Treatments	1	1.26	1.26	
r x M	5	103.29	20.66	
Error (b)	6	34.32	5.72	

Table 22. Analysis of Variance of Scores for Slicing Quality of Canned Beef. Lactic acid injection.

**K-**709

Sample No. _____

SCORE CARD FOR MEAT

Date

Slicing quality

	10	9	8	7	6	5	4	3	2	1	
Factor	Extremely	Very	Good		Medium	1	Fair	Poor	Very	Extremely	Remarks
	good	gooa		plus		minus			poor	poor	
Aroma											
Flavor	8										
Lean						-					
	Fytramely	Verv	Tender		Medium		Fain	Touch	Verv	Extremely	
	tendor	tender	Tender	plus		minus	TOTE	TOUBI	tough	tough	-
Tenderness											I .
	Extremely	Very	Juicy		Medium		Fair	Drv	Very	Extremely	^{K)}
	juicy	juicy		plus		minus			dry	dry	<u> </u>
Juiciness											I

Texture

## Descriptive Terms

	Aroma		Fl	avor		Color of Lea	n	Texture	
1. Mi	1d	1,	Flat		1.	Light brown		1. Stringy	
2. Sh	arp	2.	Mild		2.	Dark brown		2. Dense, compact	
3. St	rong	3.	Mellowed		3.	Red and brown		3.	
4. Fa	int	4.	Rich		4.	Gray		4	
5. Fo	reign	5.	Strong		5.	Irridescent		5.	
6		6.	01d						
7.		7.	Bitter			· ·			
8		8.	Acid						
		9.	Salty						
		10.	Sweet						
		Pref	erence					Scorer	

(among samples judged at one time)